UNIVERSITY OF TORONTO STUDIES

PUBLICATIONS OF THE ONTARIO FISHERIES RESEARCH LABORATORY No. 26

A QUANTITATIVE STUDY OF THE PLANKTON OF THE SHALLOW BAYS OF LAKE NIPIGON

BY

HECTOR H. MACKAY,

of the Department of Biology, University of Toronto

> TORONTO THE UNIVERSITY LIBRARY 1924

A QUANTITATIVE STUDY OF THE PLANKTON OF THE SHALLOW BAYS OF LAKE NIPIGON

An intensive study of the stomach contents of fish in Lake Nipigon in 1921 (Clemens and others, 1923) had revealed the fact that the open-water plankton, with the exception of the crustacean, Mysis relicta, did not directly form a large item in the diet of the different species of fish inhabiting the lake. On the other hand, the shallow-water plankton was found to enter very extensively into the food of the young of all species of fish examined, and to some extent contributed to the food of larger fish. Therefore, the following year it was decided to extend the quantitative studies to the shallow-water plankton, in conjunction with the deep open-water investigations of a similar nature. The data for this preliminary report were collected by the writer during the summers of 1922 and 1923. Briefly, the purpose of this investigation may be summed up as follows: to obtain some idea (1) of the quantity of the net plankton, its distribution, and the limiting factors involved; and (2) of the relation between fish and food supply. With this end in view a permanent station, Station V, was located at the foot of Pijitawabic Bay (Orient Bay) in 1922. In 1923 three stations, V, VI, and VII, were maintained in this bay, and for purposes of comparison plankton catches were taken in several other bays widely distributed, so as to include as many different conditions as possible.

The writer desires to express his sincere thanks to Dr. W. A. Clemens, Department of Biology, University of Toronto, for his kind assistance and many helpful suggestions.

The writer is, also, greatly indebted to Dr. Chancey Juday, University of Wisconsin, for contributing very valuable suggestions and advice, to Professors K. M. Wiegand

and A. J. Eames, Department of Botany, Cornell University, for identifying the higher aquatic plants, and to Dr. C. D. Marsh, Bureau of Animal Industry, Washington, D.C., for identifying some specimens of plankton copepods.

METHODS OF OBTAINING AND ENUMERATING

Plankton catches were made by means of a vertical closing net, which consisted of an upper truncated cone of heavy cotton, and a lower straining cone of No. 20 silk bolting cloth. When thoroughly shrunken, this silk gauze possesses more than 6,000 meshes per square centimetre with the area of the openings varying from 0.001 sq. mm. to 0.003 sq. mm. The lower end of the straining cone bore a cylindrical metal bucket to which was attached a removable piece of silk bolting cloth. In making a haul in water of considerable depth, the net was lowered (by means of a small steel cable wound on a windlass), slowly at first, in order to allow the net to fill with water that had filtered through the bolting cloth. In this way any abnormal amount of plankton (which might occur on a surface rich in plankton) was prevented from filling the net without first being strained. Theoretically, on the way down the net took in no water except what was filtered through the silk bolting cloth, and on the way up it filtered a column of water, the cross-section of which was that of the opening of the guard, and the height of which was equal to the distance through which the net was drawn. For depths of approximately 20 metres the net was hauled through a 5-metre stratum for each catch, the rate being about one-half a metre per second. Depth was measured, directly, by means of a counting machine over which the cable passed. The net was closed at any depth by means of a release and split-messenger. (For further description see Juday, 1916.) When the net was raised out of the water, and before the process of filtering was complete, some water was sprayed against it, so as to wash down any organisms that might have been adhering to the inside. When the filtering process was complete, the detachable silk

MACKAY: PLANKTON OF THE SHALLOW BAYS 171

was removed and the catch transferred to a large-mouthed two-ounce bottle, and enough formalin added to preserve it. In very shallow water, for example at 0.5 metres, the net was lowered to the bottom keeping the mouth of the guard above the surface of the water, until the débris raised had settled down. The guard was then lowered to one side of the bucket. This was accelerated by attaching leads to the lower rim of the guard. When the upper rim was placed within an inch of the bottom, the net was raised at a uniform velocity, and the sample washed and preserved as described above. From two to five catches were made in the immediate vicinity in quick succession, and the average number of planktonts per cubic metre for each haul was deduced. It is admitted that this method did not permit of extreme exactness in the collection of the shallow water plankton, but when several catches were taken at intervals during the season with identical apparatus, and uniform methods, the results would be comparable with each other, quantitatively, and general conclusions might, then, be drawn concerning the system of this minute life in the lake from year to year.

The whole column of water through which the net passes is not strained. This makes it necessary to determine the efficiency of the net, or the coefficient which serves as a factor for calculating the total number of organisms in the column of water. The coefficient was determined by means of a large brass cylinder of the same diameter as the plankton net, and one vard in length. The bottom of the cylinder opened and closed by means of a piston-like arrangement. The bottom was pushed open, and the cylinder was slowly lowered, perpendicularly, into the water, until the mouth of the cylinder reached the surface. Practically, the cylinder had thus fitted over a column of water. It was then closed and raised out of the water. After the water was strained, the inside of the cylinder was washed with filtered water, and the catch which accumulated on the silk was removed and preserved in formalin. Simultaneously, the plankton net was thrown into operation, and a comparative haul made through the same stratum, at the rate of one-half a metre

per second. The organisms in each catch were enumerated, their ratio determined, and the efficiency of the net deduced therefrom. The net used in 1922 gave a coefficient of 1.5 and that in 1923 a coefficient of 1.2.

The efficiency varies with the age of the net and with the abundance of the plankton. The silk bolting cloth is subject to shrinkage. Besides, the organisms tend to clog its meshes, permanently, in spite of careful washing, and in making a haul, especially in plankton-rich waters, the coefficient decreases as the net approaches the surface. Nevertheless, when the methods employed throughout the year are uniform, satisfactory comparative results should be obtained.

For the purpose of counting, a catch was concentrated to 10 c.c. or diluted to a larger volume, and 2 c.c. were removed with a stempel pipette to a counting cell, and the crustaceans, rotifers, and certain protozoans (e.g., Ceratium, Difflugia and Arcella), therein, were counted with a binocular dissecting microscope. When a larger dilution was used, for example 50 c.c., the volume used for counting was increased to 5 c.c. The number obtained in this count multiplied by 5 or 10 gave the total number for the catch. The concentrated sample was again shaken, and 1 c.c. of the material was transferred to a Sedgwick-Rafter cell for the enumeration of the Protozoa and Protophyta. A compound microscope was used for this count, and the number of organisms was ascertained in 20 different squares on the counting cell. The area of these squares was known so that the total number of organisms in each catch could be readily determined. All the results were finally computed to the number of individuals per cubic metre of water.

No data were secured for the nannoplankton organisms which pass through the meshes of the net.

PHYSICAL CONDITIONS OF LAKE NIPIGON

Since the physical features of the lake have already been described (Clemens, 1923-1924), only a few general statements need be made here. MACKAY: PLANKTON OF THE SHALLOW BAYS 173

- (1) The region surrounding the lake is typically Archaean, rugged bluffs and highlands rising as high as 600 feet above the lake.
- (2) The open shores, when exposed to wave-action, tend to become rocky and sandy, but among the islands and protected bays, mud conditions prevail with the accompanying development of large aquatic vegetation. The latter areas are limited in Lake Nipigon. The northern shores are more extensively marshy than the southern ones.
- (3) The variation in temperatures during the period of these investigations may be found in Table VI.
- (4) The summer period is short. The advent of spring is four to five weeks later than along the north shore of Lake Ontario with a correspondingly earlier setting in of winter. The lakes and streams are free from ice generally in mid-May, and are closed again early in November.
- (5) The total amount of rainfall per annum is considerable. Wilson (1910) has suggested that it lies between 20" and 25", and the average precipitation is probably greater than in the south-eastern portion of Ontario.

CHEMICAL CONDITIONS

Chemical analyses of water samples were carried out at Orient Bay (Stations V, VI and VII), Bell's Bay, and McL. Bay, at the same time that plankton catches and temperature readings were made. See Table IV, page 192. For these bays the following general statements may be made.

(1) Covering the period of these investigations there was always a large supply of oxygen ranging from 88.2% to 136.0% saturation. The latter maximum, when the water was supersaturated, occurred on Sept. 11, 1923.

MACKAY: PLANKTON OF THE SHALLOW BAYS 174

- (2) The amount of carbon dioxide was negligible
- (3) The amount of bicarbonate was always high
- (4) Acidity and alkalinity, small traces.
- (5) Hydrogen ion concentration was high.

DISTRIBUTION OF THE PLANKTON

Chief's Bay

This small bay is situated in the southwest corner of the lake. It has a maximum depth of 15 metres, approximately The bottom, which is almost entirely mud, shows a considerable quantity of rooted-vegetation, chiefly Potamogeton,

The maximum amount of net plankton per cubic metre of water was concentrated in the 10-13 m. stratum. It appears that there was sufficient dissolved oxygen in this zone to meet the needs of its numerous and varied inhabitants. Unfortunately, no direct evidence of this was obtained.

Diaptomus minutus and Daphnia longispina var. hyalina predominated among the Crustacea. Ninety-three per cent. of the Diaptomus minutus, 72 per cent. of the Cyclops bicuspidatus, 71 per cent, of the Bosmina longirostris and 81 per cent. of the Daphnia longispina var. hyalina occurred in the 10-13 metre stratum. Epischura lacustris occurred in small numbers at all depths. A few specimens of Limnocalanus macrurus were obtained from the 5-10 and 10-13 metre strata. The nauplii, which were found at all depths, and increased gradually from surface to bottom, reached a maximum of 87.5 per cent. per cubic metre of water in the 10-13 metre stratum.

The rotifers, likewise, had the same general distribution as the Crustacea and nauplii, 56 per cent. occurring in the 10-13 metre stratum. Anuraea aculeata and A. cochlearis were predominant, and comprised 60 per cent. of the total number of rotifers. Notholca and Asplanchna were fairly abundant. The former was found at all depths, and the latter in the 5-10 and 10-13 metre strata.

Dinobryon was most abundant in the 0-5 zone, 1,356 colonies per litre being found. Codonella and Euglypha occurred in small numbers in the 0-5 metre stratum.

The Algae, exclusive of the diatoms, were represented by a few filaments of Anabaena in the 10-13 metre stratum. Diatoms were present in considerable numbers at all depths. Melosira predominated, 5,270 filaments per litre being found in the 10-13 metre stratum.

Black Sturgeon Bay

Black Sturgeon Bay is the most southerly portion of Grand Bay and lies southeast of Chief's Bay to which it is connected by a narrow channel. The higher aquatic vegetation included: Acorus calamus L., Carex filiformis L., Carex riparia W. Curtis, Potamogeton compressus L., Ranunculus aquatilis L., Scirpus acutus (= S. occidentalis), Sium cicutaefolium Schrank.

The net plankton was concentrated in the 0-5 stratum. The Crustacea were much less abundant than in the neighbouring bay described above. Their vertical distribution was fairly uniform with the maximum number per cubic metre of water in the 0-5 stratum. It was found that 88 per cent. of the Cyclops bicuspidatus were limited to the 0-5 metre stratum. None was found below this region. Sixty-nine per cent. of the Diaptomus minutus occurred in the surface stratum. Two specimens of Limnocalanus macrurus were found in the 5-10 metre zone and four in the 15-22 metre zone. Epischura lacustris, in small numbers, occupied the 0-5 metre stratum. The maximum number of nauplii was found in the 0-5 metre stratum.

The rotifers were most abundant, also, between the surface and 5 metres. The frequent forms were Anuraea aculeata (51.5 per cent.), Polyarthra platyptera (19.3 per cent.), Notholca longispina (17.4 per cent.), Ploesoma lenticulare (1 per cent.), Conochilus unicornis (7.0 per cent.), and Gastropus stylifer (3.8 per cent.) of the total number of rotifers.

Dinobryon, the predominant protozoan, was found at all depths. Ceratium was also fairly common. Difflugia and Codonella occurred in small numbers to a depth of 10 metres. A few colonies of Vorticella were found in the surface zone.

Melosira and Tabellaria were the predominant diatoms,

and occurred at all depths. They were most abundant in the 0-5 metre stratum.

Gull Bay

This bay lies to the north and west of Grand Bay, and is nearly three times as large as Chief's Bay. Near the northeast shore the bottom is sandy, but about 800 yards out the bottom is muddy. The bottom of the southeast end is chiefly clay. The plankton sample was taken at the northeast end, and about the middle of this portion of the bay.

The limnetic zooplankton consisted largely of Daphnia longispina var. hyalina and Diaptomus minutus. The Crustacea, generally, were most abundant above the thermocline, that is, in the 0-5 metre stratum. Ninety-six per cent. of the total number of Cladocera were Daphnia longispina var. hyalina. Bosmina longirostris occurred in small numbers to the depth of 15 metres. Diaphanosoma brachyurum was found only in the 0-5 metre stratum and in small numbers. Diaptomus minutus contributed 86.6 per cent. of the total number of Copepoda. Cyclops was represented by two species, leuckarti and bicuspidatus, in about equal proportions, but not beyond the 15 metre depth. Epischura lacustris contributed 1,600 individuals per cubic metre of water in the 0-5 metre stratum, and 50 in the 5-10 m. depth. Limnocalanus macrurus occurred in small numbers below the 10 metre stratum.

The nauplii were uniformly distributed, the largest number occurring below the thermocline.

Notholca longispina was the most abundant rotifer and comprised 57.5 per cent. and Conochilus unicornis 18.8 per cent. of the total number of rotifers.

The green and blue-green Algae occurred in fairly large number's reaching their maximum in the 0-5 stratum. None was found below the 15 m. depth. Aphanocapsa and Anabaena were the most abundant. Chroococcus and Microcystis were about equally numerous. Sphaerocystis was fairly abundant in the 0-5 m. stratum. Staurastrum was common, and about equally distributed to the depth of 15 metres. MACKAY: PLANKTON OF THE SHALLOW BAYS 177

Tabellaria fenestrata was the most abundant diatom, 1,850 filaments per litre occurring in the 0-5 metre stratum.

Humboldt Bay

Humboldt Bay is situated at the northeast side of the lake. It comprises two bays, really, a deep outer bay, the maximum depth of which is 60 metres, approximately, and a shallow inner bay with a maximum depth of five metres. Greater silting has occurred in the inner bay, with an accompanying profusion of plant and animal life. The chief aquatic plants found were *Potamogeton filiformis*, *Potamogeton heterophyllus*, *Potamogeton pectinatus* and *Elodea (canadensis?)*.

(1) Outer Bay. The Cladocera were not abundant. The 0-5 m. stratum contained a few specimens of Bosmina, and the 5-10 m. stratum a few daphnids. The Crustacea, with the exception of the immature nauplii, were not abundant. About twice as many nauplii occurred in the 0-5 metre stratum as in the 5-10 metre stratum. Cyclops and Diaptomus minutus and Diaptomus sicilis occurred in small numbers.

Anuraea cochlearis was the most abundant rotifer. The 0-5 metre stratum contained six times as many as the 5-10 metre stratum.

Ceratium and *Dinobryon* were predominant among the protozoans, four-fifths of the *Ceratium* specimens and all the *Dinobryon* occurring in the 0-5 metre stratum. *Codonella* was represented.

Aphanizomenon was the only blue-green in measurable quantity. Asterionella was the most abundant diatom.

(2) Inner Bay. This bay was a striking contrast to the one just described. There were over four times as many Cladocera and Copepoda, twice as many nauplii and nearly four times as many rotifers obtained from an 0-1 metre haul than from the combined 0-5 and 5-10 metre hauls in the outer bay.

The Protozoa, also, showed a considerable increase as compared with the total haul through ten metres. Curiously enough, the phytoplankton showed some decline in numbers. Algae with the exception of diatomaceous flora were absent.

178 MACKAY: PLANKTON OF THE SHALLOW BAYS

The predominant copepod was *Diaptomus*, two species oregonensis and minutus. A few immature females of Senecella calanoides were found. This is very interesting in view of the fact that this organism is usually thought to occur only in deep water. *Epischura lacustris* occurred in small numbers. *Diaphanosoma brachyurum* (predominant), Sida crystallina, and Daphnia longispina var. hyalina represented the Cladocera.

Ombabika Bay. This very shallow bay is situated at the northeast corner of the lake. A narrow channel connects it with the main body of water. The bottom is muddy near shore, but clayey in the central region. Marshy conditions prevail at the extreme northern end.

The Crustacea were present in small numbers. Ninetyfive per cent. of the Cladocera were Daphnia longispina var. hyalina, and these were most abundant in the 5-13 metre stratum. Bosmina longirostris and Diaphanosoma brachyurum occurred in small numbers in the 0-5 metre zone. The copepods were represented by Cyclops bicuspidatus and Diaptomus minutus, the majority being in the 0-5 metre stratum.

The nauplii were about equally distributed.

The rotifers occurred in small numbers. Notholca longispina and Anuraea cochlearis were predominant, and occurred most abundantly in the 0-5 metre stratum. Ceratium was the most abundant protozoan (85.7 per cent.). Codonella contributed 14.3 per cent. of the total number.

The Algae were represented by Aphanizomenon, Chroococcus and Dictyosphaerium. Aphanizomenon predominated.

Tabellaria was the most abundant diatom.

South of the Windigo Islands. This plankton haul was taken just east of the Whitesand river, where the water is very shallow. The numbers of copepods were typical.

The Cladocera were represented by Bosmina longirostris and Daphnia longispina var. hyalina, almost three times as many of the latter. Cyclops bicuspidatus and Diaptomus minutus were the predominant Copepoda and were present in equal numbers, approximately. *Diaptomus ashlandi* occurred in small numbers. *Epischura lacustris* contributed about 10 per cent.

Nauplii were fairly abundant.

Rotifers were present in small numbers. *Conochilus* unicornis and Notholca longispina were the predominant forms.

Vorticella was the most abundant of the Protozoa.

Aphanizomenon was the numerous alga. Anābāenā was, also, fairly common.

Asterionella was the predominant diatom.

Wabinosh Bay. This plankton catch was taken about the centre of the bay where the water was deepest. With the exception of the Algae, all the planktonts were most numerous in the 0-5 metre stratum.

Bosmina longirostris occurred throughout all depths and contributed 52 per cent. of the total number of Cladocera. The remaining 48 per cent. were Daphnia longispina var. hyalina, the majority of which were in the 0-5 metre stratum. The copepods were fairly abundant, and were represented by Cyclops sp., Diaptomus sp., and Epischura lacustris. Cyclops and Diaptomus occurred in nearly equal proportions.

More than half the nauplii were in the 0-5 metre stratum.

Notholca longispina, which occurred throughout, was the most abundant rotifer, 64 per cent. occurring in the 0-5 metre stratum. Anuraea cochlearis and Conochilus unicornis occurred in smaller quantities throughout. Polyarthra platyptera did not occur below the 15-metre depth. A few specimens of Rattulus cylindricus were found in the 5-10 metre stratum.

McL. Bay. Considerable mud had accumulated in this small bay, which gave rise to the development of some large aquatic vegetation. Those occurring most commonly were: Equisetum limosum L., Potamogeton heterophyllus Schreb., Potamogeton richardsonii (Bennett) Rydb., Sparganium angustifolium Michx.

180 MACKAY: PLANKTON OF THE SHALLOW BAYS

Bosmina longirostris was fairly abundant, considering the amount of water strained. Extremely shallow water (.18 m.) appeared to be avoided. The nauplii, on the other hand, appeared to increase toward shore.

The rotifers were numerous and varied. *Ploesoma lenticulare* and *Polyarthra platyptera* were the predominant forms, and were more abundant at .43 metres.

The Protozoa were scarce, the most abundant being Ceratium hirundinella.

The Algae, with the exception of the diatoms, were not as abundant as one might expect. The diatoms were very abundant, *Navicula* predominated. *Synedra* and *Fragilaria* were, also, very abundant.

Bell's Bay

Equisetum limosum (L.) and Eleocharis palustris (L.) R. & S. var. vigens Bailey, were the most numerous large aquatic plants in this bay. Some silting had taken place.

The alkalinity of the waters was the highest of any determined, namely, 3 parts per million. The hydrogen ion concentration, also, was high (8.5).

The limnetic Crustacea were represented by *Cyclops* in fairly large numbers. No other adult Crustacea were found in this bay.

The nauplii were less abundant than in McL. Bay, less than half as many per cubic metre occurring.

Rotifers were abundant and varied. *Ploesoma lenticulare* predominated. *Anuraea cochlearis* was nearly equally numerous. *Polyarthra platyptera* was, also, abundant.

The Protozoa were much more numerous than in McL. Bay (a week previous). This is accounted for by the large numbers of *Dinobryon*.

Three hundred and twelve filaments of *Mougeotia*, 21 filaments of *Zygnema* and 156 colonies of *Merismopedium* per litre were found.

Diatoms were very numerous. Asterionella predominated.

Bay of the Nipigon River

This bay is small, shallow, and well sheltered from strong wave-action. Its borders are marshy, and a luxuriant aquatic vegetation exists. The most frequently occurring plants were four species of *Potamogeton*.

With the exception of a few *Alona guttata*, adult Crustacea were not found. Nauplii, on the other hand, were very abundant, and the haul made in a little over half a metre gave the largest number of nauplii found at any time during the period of these investigations.

The rotifers were numerous and varied. Anuraea cochlearis was predominant, 291 per litre.

Dinobryon was the most abundant protozoan, 1,017 colonies per litre occurring.

The Algae were represented by an unidentified filamentous form and the desmid *Euastrum*.

Diatoms were very abundant. Asterionella was predominant and as many as 10,345 colonies per litre were found. Fragilaria, Navicula and Synedra were, also, very abundant.

Orient Bay

Orient Bay, which is situated in the southeast corner of the lake, is 9 miles long, and has a maximum width of $1\frac{1}{2}$ miles. Highlands of columnar diabase rise abruptly on both sides. The Pustagone River is the only large inlet. Strong north winds cause a considerable heaping up of the waters of the bay, and strong south winds produce a slight lowering. The bay, however, is fairly well protected from the violent gales that sometimes sweep over the lake. Silting has taken place to some extent along its borders. The stages in the evolution from the more-primitive to the more-evolved shore conditions are very strikingly illustrated in this region (Pearsall, 1920 and 1921).

Station V. The water at Station V is very shallow, the greatest depth not being more than three metres. The higher aquatic vegetation is a mixture of types characteristic

182 MACKAY: PLANKTON OF THE SHALLOW BAYS

of the transition from primitive to evolved conditions (Pearsall, loc. cit.). The vegetation includes: Chara, Carex, Equisetum limosum, Scirpus occidentalis, Eriocaulon septangulare, Sparganium angustifolium, S. diversifolium, Sagittaria cuneata, Hippuris vulgaris, Myriophyllum, Nymphozanthus rubrodiscus, N. variegatus, Utricularia intermedia, Eleocharis palustris, var. vigens, Phragmites, Potamogeton richardsonii and P. heterophyllus. Nymphozanthus, Scirpus, Phragmites and Potamogeton are more abundant where there is less organic decay and more silting. On the other hand, Carex sp., Eleocharis palustris, and Equisetum limosum appear to thrive best on organic soil.

In studying the plankton of this community, it was thought best to take a series of vertical hauls in quick succession, in relatively different environs, in the immediate vicinity, and to compare their quantities. With this end in view in 1922, the sub-stations chosen and their physical features were as follows:

Sub-station A-Near Potamogeton. Sand bottom.

"

- B—Among *Eleocharis palustris*, chiefly. Considerable vegetable debris.
- C—Mixed vegetation. Combination of conditions in A and B.
- " D—No vegetation. Gravel bottom.
- ' E-No vegetation. Sand bottom.

The results of this experiment are condensed in the following table. The total plankton numbers are per litre of water, and indicate the standing crop at the different stations on the dates specified.

 TABLE I—ORIENT BAY, STATION V, 1922

 COMPARATIVE TOTAL PLANKTON PER LITRE

Sub-station	June 30/22	July 14/22	Aug. 1/22	Aug. 3/22	Aug. 19/22
A	6,790	25,030	13,150	14.880	12,380
В	18,269,550	26,300	15,070	16,900	12,370
С		27,560	28,860	11,050	20,390
D	8,322,840	17,400	17.080	3,410	5,910
E	8,489,560	8,080	7,470	24,900	7,960

NOTE.-Navicula has not been included in the above counts, Table I.

An examination of the tables shows that sub-station C, where mixed conditions prevail, is the most productive of plankton. Sub-station B corresponds closely with substation C. Sub-station D over gravel and no vegetation is least productive. Increased production, without exception, is correlated with the increase of the phytoplankton. The Crustacea do not appear to be limited to any one type of community described above. This is probably due to the fact that these organisms can move about at their own volition.

In 1923 the experiment was continued and the results are embodied in Table II. This summer only three substations were operated.

Sub-station (1) Sand and slightly gravelly bottom. Pond lilies 2-4 yards distant.

- (2) Sand bottom. Potamogeton and pond lilies 2-4 yards distant.
 (2) Mind and it is a straight of the second str
 - (3) Mixed conditions. Higher aquatic flora consisted of *Eleocharis*, *Potamogeton* and pond lilies. Vegetable debris.

 TABLE II—ORIENT BAY, STATION V, 1923

 COMPARATIVE TOTAL PLANKTON PER LITRE

Sub- station	July 4/23	July 12/23	July 19/23	July 31/23	Aug. 13/23	Aug. 19/23	Sept. 11/23
1	2,390	8,670	3,620	4,510	15,070	47,320	11,170
2	10,430	9,110	13,410	4,290	19,540	47,150	3,620
3	32,860	9,570	9,570	19,350	30,520	28,500	5,940

NOTE .- Navicula has not been included in the above counts, Table II.

The plankton quantities given above for sub-station 2, July 19, and for sub-stations 1 and 2, August 19, and for substation 1, September 11, appear to discredit the statement made above to the effect that plankton is most abundant in areas where there is a mixture of types of higher aquatic plants. This apparent inconsistency may be due to the controlling influence of the wind on the plankton at these stations. On July 19, the wind blew from the northwest

184 MACKEY: PLANKTON OF THE SHALLOW BAYS

and on August 19 and September 11 from the north. This directly affected sub-stations 1 and 2 by stirring up the waters, and causing some mixing with the more open-waters of the bay with a consequent abnormal increase in diatoms. Also, on July 19 and September 11 the blue-green Algae driven by the force of the north wind accumulated at these stations.

It is apparent, then, that a mixture of higher aquatic vegetation favours a richer development of phytoplankton. This increase of the phytoplankton is, also, correlated with an increase in the Entomostraca.

The Organisms (Station V). The Cladocera were numerous and varied. The predominant forms, indicated in Table V, were Bosmina longirostris, Daphnia longispina var. hyalina. Daphnia retrocurva, Acroperus harpae, Alonella nana, and Sida crystallina. Of these Bosmina longirostris was the most numerous. Alona, Chydorus, Polyphemus pediculus, Ceriodaphnia, Diaphanosoma and Eurycercus lamellatus occurred in small quantities. Sida crystallina gave a fairly large number at sub-station E, July 14, 1922. In 1923, Bosmina longirostris and Daphnia were the most predominant crustaceans. Sida, Alona, Rhynchotalona, and Polyphemus occurred in small quantities. Cyclops was the most abundant copepod during the period of these investigations. Diaptomus was much less abundant during both seasons. Canthocamptus was infrequent. Epischura lacustris was fairly common in 1923. A few specimens of immature females of Senecella calanoides were obtained. The largest number of nauplii were obtained at sub-station B, August 3, 1922, 33,200 individuals per cubic metre being found. In the summer of 1923 they reached a maximum of 126,990 per cubic metre of water.

The Rotifers were numerous and varied. Notholca longispina and Anuraea cochlearis were predominant. Ploesoma lenticulare, Polyarthra platyptera, Monostyla lunaris, and a Bdelloid rotifer were common. During the summer of 1923 Polyarthra platyptera was the most abundant rotifer.

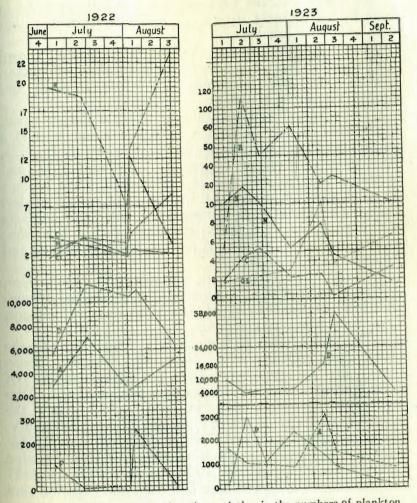


FIGURE I.—Curves illustrating the variation in the numbers of plankton organisms per litre of water at Station V, Orient Bay, Lake Nipigon, at weekly intervals during the summers of 1922 and 1923. A.—Algae; C.—Copepods; Cl.—Cladocera; D.—Diatoms; N.—Nauplii; P.—Protozoa; R.—Rotifers.

Notholca and Anuraea were numerous and about equal in quantity. Synchaeta stylata occurred less frequently, but usually in large numbers.

In 1922 Dinobryon was the most abundant protozoan. Excluding this form, Ceratium hirundinella was predominant. Euglypha was fairly numerous. Cyphoderia, Difflugia, and Codonella occurred in about equal quantities.

In 1923 Dinobryon was again the predominant protozoan. It occurred in July at all the sub-stations and reached a maximum of 4,436 colonies per cubic metre on July 12, 1923. Its numbers decreased during the middle of July, and increased again at the end of the month. Then came a decrease which continued to September 11, when the last plankton haul was made. During this summer, also, Difflugia and Centropyxis were fairly abundant with a somewhat smaller number of Arcella. A few colonies of Vorticella and Epistylis were obtained.

The blue-green Algae were represented by Aphanocapsa, Microcystis, Chroococcus, Merismopedium, Anabaena, Aphanizomenon, and Oscillatoria. Aphanocapsa was predominant. Chroococcus was very numerous.

The green Algae were much less abundant than the blue-greens. Sphaerocystis, Mougeotia, Ulothrix, Scenedesmus, and Dictyosphaerium were the common forms. Of these Mougeotia and Scenedesmus were predominant. Diatoms were extremely abundant and varied. Only the quantities of the predominant forms are included in Table V. During the summer of 1922 Tabellaria fenestrata and Navicula were most numerous. Navicula was present in overwhelming numbers, 46,740 individuals per litre, July 4, 1923. In 1923 Asterionella predominated, but Tabellaria and Melosira were also very abundant.

The curves shown in Figure 1 express the variation in the quantity of the plankton groups during the periods covered by these investigations. The first week of July, 1922, there was an increase in the numbers of cyclops and nauplii. This was followed by a decrease, which continued until July 31. About August 3 a very sudden and large

MACKAY: PLANKTON OF THE SHALLOW BAYS 187

increase in the number of nauplii took place, followed by a more gradual decrease, tending towards a minimum, which probably occurred the middle of the last week of August. The Cladocera were still tending toward a higher maximum on August 19, when operations were suspended. The form responsible for this rise was Bosmina longirostris. The Copepoda were most numerous the end of June. Then followed a decrease. A smaller peak occurred on August 3, when all forms showed a general increase. The Rotifera remained, approximately, constant in numbers from the end of June to about mid-July, when there was a rather sudden decline, which applied to all the planktonts. This decrease was more sharply defined in the case of the rotifers, on account of the larger numbers involved. The rotifers affecting the change were Anuraea cochlearis and Notholca longispina. The Protozoa reached a maximum on August 3. This increase was correlated with increased numbers of Dinobryon and Ceratium.

The Algae and diatoms reached their maxima on July 14. Tabellaria, Navicula, Asterionella, Aphanocapsa, and Chroococcus were responsible for this.

The curves for 1923 are more regular and definite. Rotifera, nauplii, and Protozoa reached a maximum about July 12, the Copepoda July 19. The Cladocera, on the other hand, reached a maximum the second week of August. This corresponds with what occurred in 1922. The organisms responsible for the increase were *Bosmina longirostris* and *Daphnia*. *Polyarthra platyptera* caused the increase among the rotifers. *Dinobryon* and *Cyclops* were responsible for increases among the Protozoa and Copepoda, respectively.

The Algae and the diatoms showed their maxima between the second and third week of August. Aphanocapsa, Chroococcus, Navicula, Asterionella and Tabellaria were responsible for these increases.

Comparison of Stations V, VI, and VII, Orient Bay. During the month of August, 1923, Stations VI (Aviator's Bay), and VII (Refuse Bay) were operated in conjunction with Station V for purposes of comparison, for they appeared

to offer some interesting data in regard to the study of quantitative plankton.

Station VI is to some extent a land-locked portion of Orient Bay. The maximum depth is, approximately, 1.5 metres. The water is deeply-coloured brown, due to the large organic content, which is brought down by small streams, entering at its north and south ends. The low peninsula which encloses the bay has been undermined to some extent to form bayous, which connect Station VI with the open waters of Orient Bay.

The higher aquatic vegetation is much more prolific here than at Station V. This is due, probably, to the greater protection against wave-action. The higher aquatic vegetation includes: Equisetum limosum, Eleocharis acicularis, Hippurus vulgaris, Isoetes echinospora, Juncus alpinus, Juncus radiosus, Myriophyllum (verticillatum probably), Phragmites communis, Potamogeton heterophyllus, Potamogeton richardsonii, Sagittaria latifolia, Sagittaria cuneata, Scirpus subterminalis?, Sium cicutaefolium, Sparganium angustifolium, and Utricularia intermedia.

It would appear that silting and organic decay are going on here hand in hand. It is, also, probable that the siltrequiring plants are replacing the ones that thrive best in organic soil, namely, *Carex* and *Equisetum* (Pearsall, *loc. cit.*). *Isoetes braunii* was fairly abundant along the water margin of sub-station I (Station VI).

Station VII, a very small bay, is practically open water. The transparency of the water is high, as compared with Stations V and VI, and compares favourably with that of Cayuga Lake (Birge and Juday, 1914). The shores are rocky, and the only vegetation noticed was a large submerged species of *Potamogeton*. These occurred where there was an accumulation of silt over the rocks. The north shore was used by the fishermen, as a dumping ground for the entrails of fishes, with the result that there was an accumulation of the products of their decay in the adjacent water. A chemical analysis of the water showed that the north side was comparable with the south. This was probably

М	2,470 P	KAY: PLA	NKTO		
Station VII	2,4	II	11,880	34,740 7,850 7,850 6,670 750	43,000 35,500 1,340
Stati		1a	s	thra ta na nas ta	уон. ст. Ца.
		Bosmina. Daphnia.	Cyclops Diaptomus.	Polyarthra A nuraea Ploesoma Gastropus Notholca	Dinobryon. Ceratium Codonella
	14,975	3,245 155 185	1,615	51,120 36,600 30.790 11,120 8,325 6,795 1,700 1,700	3,289,500 12,600 1,860 1,145 640 410
n VI					
Station VI		Bosmina Chydorus Alonella	Cyclops	Polyarthra A nuraea Synchaeta Gastropus Ploesoma Conochilus Notholca	Dinobryon Ceratium Arcella Diffugia Euglypha Codonella
	6,210	5,920 625 470 325	1,600 240	9,560 8,390 4,940 1,420 795	925,000 28,000 4,000 3,190 1,875 1,480 1,250
N					
Station V		Bosmina Daphnia Alonella	Copepoda Cyclops Diaptomus.	A nuraea Polyarthra Notholas Gastropus Monostyla	Dinobryon Ceratium A rcella E pistylis. Eughypha Cyphoderia
	Nauplii	Cladocera	Copepoda	Rotifera	Protozoa

	Station V		Station VI	Station VII
Algae	Mougeolia Chroococcus Melosira	1,570,800 398,000 142,500	Dictyosphaerium356,100Microcystis321,600Merismopedium280,450Chroococcus119,150Mougeolia86,725	Oscillatoria Oocystis A phanizome Chroococcus
Diatoms	A sterionella Naricula. Tabellaria. Melosira. Pragilaria. Cocconema. Synedra.	$\begin{array}{c} 16,414,500\\ 6,380,000\\ 4,498,000\\ 4,498,000\\ 4,089,000\\ 1,055,000\\ 850,000\\ 850,000\\ 482,200\\ \end{array}$	Asterionella	A sterionella

due to the current circulating in the bay, which not only equalized conditions, but also prevented stagnation of the waters.

Table III gives the average quantities of the planktonts taken at Stations V, VI and VII during the month of August, 1923.

Analysis of the Organisms, Orient Bay.

Cladocera. An examination of Table III shows that Bosmina longirostris was the most abundant cladoceran, and that at Station V this organism was the most abundant. Daphnia was present in relatively smaller numbers at Stations V and VII.

Copepoda. The largest number of copepods occurred at Station VII. Representatives of the genus Cyclops were mainly responsible for this. The increase was probably correlated with the high hydrogen ion concentration and bicarbonate occurring in this locality in August. Diaptomus was infrequent.

Rotifera. Stations VI and VII gave the highest number of rotifers. At Station VI they were not only most abundant, but also occurred in the greatest variety of forms. Polyarthra platyptera was predominant. This may be correlated also with the high hydrogen ion concentration, occurring at these stations at the time these large catches were made. Anuraea cochlearis was most numerous at Station V, but Polyarthra platyptera was also as abundant relatively. The frequency of the other organisms is indicated in Table III.

Protozoa. Station VI gave the largest average number of protozoans. This was due to the large numbers of Dinobryon. Ceratium hirundinella was most abundant at Station VII, probably for the reason that this form prefers more open water conditions.

Algae. The Algae were most numerous at Station V. This was due to the abundance of the green-alga, Mougeotia.

190

							Temp.	Temp.	Temp.
Station	Date	Hq	CO2	02	Bicar- bonate	Acidity	air °C.	water at surface	bottom
Orient Bay Au	Aug. 13/23								
Station V 1.	1. Among weeds	8.0	1.0	6.6	06	ŝ	14.7	16.3	16.3
2.	2. Open water	7.8	.5	6.0	93	2		:	
Au	Aug. 19/23								
1.	1. Among weeds	8.2	trace	6.9	06	2	15.0	17.2	17.0
13	2. Open water	8.2	trace	6.9	89	2	**		
Orient Bay Au	Aug. 7/23	8.3	1.0	7.1	93	:	16.2	17.0	17.0
Station VI Au	Aug. 19/23 West arm	8.0	trace	6.7	95	4	13.8	17.5	17.0
Au	Aug. 29/23	6.7	1.0	6.4	66	4	17.7	17.0	16.5
	Aug. 18/23				100		6 01	9	
Station VII 1.	I. North shore	8.4	no trace	1.1	100	:	19.3	10.9	10.4
McL. Bay Au	Aug. 10/23	6.7	1.0	6.8	101	2	14.5	14.0	14.0
Bell's Bay Au CO ₂ , Acidity Onumber	s Bay Aug. 17/23 8.5 no trace 7.4 CO2, Acidity, Bicarbonate and Alkalinity—parts per million. O.—mumber of c. per litre	8.5 Ikalinity	no trace 7.4 	7.4 r million	107		15.5	17.1	17.1

192

MACKAY: PLANKTON OF THE SHALLOW BAYS 193

Blue-greens at Station VI were responsible for large quantities. This is probably due to their being able to thrive best in warm, shallow, protected bays. *Oscillatoria* was abundant at Station VII, particularly near the dock where the decaying fish offal made possible a development of aquatic fungi.

Diatoms. Diatoms were most abundant at Station V. The preponderance here was due to the overwhelmingly large numbers of *Asterionella*. These colonies were also predominant in the material taken from Stations VI and VII. The greatest variety and largest quantities occurred in the more protected regions, rather than in the more-open water areas.

LIMITING FACTORS

The factors limiting the amount of plankton in Lake Nipigon are twofold:

1. The amount of shallow water where higher aquatic vegetation thrives best is limited. Hence, the phytoplankton is limited. Hence, the zooplankton is limited. In other words, Lake Nipigon may be classified as a deep, rocky (primitive) lake, as compared with a shallow, silted (more-evolved lake). (Pearsall, *loc. cit.*) and (Marsh, 1901, 1903). The resistant character of the rocks along the shore operates against the formation of fine silts. Agriculture is not carried on to any extent in the surrounding district and so silts are not brought down by rivers in large quantities.

2. The short summer period prevents the prolific development of plankton even in shallow bays that might be possible were the summer period longer.

CONCLUSIONS

1. The plankton of the shallow bays of Lake Nipigon is varied and comparatively rich, with the exception of the adult Entomostraca.

2. The quantitative balance is considerably on the side of the Rotifera, Protozoa, and phytoplankton, but it is

possible that if plankton catches were made later in the season the adult crustacean population might be considerably larger.

3. A mixture of higher aquatic vegetation appears to favour a richer development of phytoplankton, and the greatest variety and largest quantity occur in the moreprotected rather than in more-open water areas.

4. Maximum plankton production ranges from the middle of July to the middle of August. Whether or not this is the maximum for the year, or the autumn maximum, is still open for investigation.

MACKAY: PLANKTON OF THE SHALLOW BAYS 195

TABLE V—ANALYSIS OF PLANKTON CATCHES The results indicate the number of individuals or colonies per cubic metre of water at the various depths.

	fferent forms found in the r	at alankton a	re designated as follows:
		iet plankton a	D -Dietyosphaerium
	Ac-Acroperus	1.1.1.1.1.1.1.1.1	
	A —Alona	and the second second	E — Euastrum
	Al — Alonella	10 March 10	Mo — Mougeotia
	B -Bosmina		Se -Scenedesmus
	Ce-Ceriodaphnia	Green Algae	Sp — Sphaerocystis
Cladocera	D Daphnia		S =Staurastrum
Claudeera	Di-Diaphanosoma		U — Ulothrix
	E -Eurycercus		Z —Zygnema
	P — Polyphemus	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Green Alga
	R — Rhynchotalona		(unidentified)
	S —Sida		1
	Ca-Canthocamptus		(An <i>—Anabaena</i>
	C — Cyclops		Aph-Aphanizomenon
	D — Diaptomus		Ap — A phanocapsa
Copepoda -	E —Epischura	Blue-Green	A _Aphanothece
			C —Chroococcus
	L —Limnocalanus	Algae	Me -Merismopedium
	S —Senecella		M — Microcystis
			O —Oocystis
			lOs —Oscillatoria
a decimal and	An-Anuraea = Keratella		Am — Amphora
	As—Asplanchna		A —Asterionella
80	Bd-Bdelloid rotifer		Co - Cocconema
	Ca-Cathypna = Lecane		Cy — Cymbella
	Co-Colurus		E — Epithemia
	C Conochilus		F — Fragilaria
	E -Euchlanis		G -Gomphonema
Rotifera	G -Gastropus	Diatoms-	M —Melosira
	L —Lepadella		N Navicula
	M — Monostyla		Ni —Nitzschia
	N Notholca		P -Pinnularia
	PI — Ploesoma		St -Stephanodiscus
	P Polyarthra		Su -Surirella
	R -Rattulus = Trichocerca		Sy -Synedra
	S —Synchaeta		T — Tabellaria
	A -Arcella		(-
	Ce-Centropyxis		
	C - Ceratium		
	Co-Codonella		
	Cy-Cyphoderia		
Protozoa	D — Difflugia		
in the second se	Di-Dinobryon		
50 G	Ep—Epistylis		
	Ep-Epistyus		

E — Euglypha V — Vorticella

Depth metres)	Cladocera	Copepoda	Nauplii	Ro	otifera	Pro	otozoa	Green and blue-green Algae	1	Diatoms
2	(A 678		80,720	An	291,500	с	82,100	678,000	A	
				Ca	680	Co	13,560	E 339,000	E F	340,000 2,883,000
	E P D			G	680	D	2,030	L 000,000	N St	1,865,000
				L	680	Di 1	,017,000		Sy	170,000
058				M	680	Ep	339,200		T	340,000
				N	2,030					
				PI	4,060					
				P	57,660					
	1			S	4,060					

T.	ABLE	V-Con	tinu	ed
BELL'S	BAY,	AUGUST	17,	1923

Depth (metres)	Cladocera	Copepoda	Nauplii	Rotifera	Protozoa	Green and blue-green Algae	Diatoms
043	{	C 855	10,200	An 35,900 G 855 N 2,560 Pl 46,190 P 14,540	C 3,400 Co 3,400 Di 427,000	Z 21,300	A 1,069,000 F 427,000 N 427,000
058	{	C 2,030	10,170	An 32,560 G 1,350 N 680 P1 38,670 P 10,170 S 2,700	C 9,490 Co 6,780 Cy 678 Di 169,000		A 3,561,000 Co 508,000 F 1,017,000 N 2,035,000
	A 620 Al 620	C 2,490	16,240	An 81,840 C 60	C 2,490 Co 11,160	Me 156,000 Mo 312,000	A 1,872,000 E 624,000
063	AI 020			G 1,860 M 1,860 N 1,240 Pl 79,980 P 38,440	Di 156,000		F 1,092,000 N 1,404,000 Sy 780,000

Depth (metres)	Cla	docera	Cop	epoda	Nauplii	R	otifera	P	rotozoa	blu	een and e-green Algae	D	liatoms
	B	970		5,500	7,850		14,000	С	74,000	D	43,000	A	387,300
	D	860	D	1,180		As	100	Co	2,250	M	43,000	F	602,600
						С	1,900	D	3,380	0	172,000	M	1,420,000
0-5								Di	2,150,000			Sy	43,000
						G	970					Т	2,023,000
						N	4,300						
						Pl	200						
	(Р	6,000						
	B	160	С	750	1,500	An	1,930	С	7,300	An	21,000	A	129,100
	D	320	D	210		С	320	Co	160	0	21,000	F	118,400
5-10	{		E	50		N	1,070	D	110			M	624,000
						Pl	50	Di	344,000			Sy	10,700
	L					P	110	V	10,700			Т	366,000
	D	50	D	270	160	An	160	С	700	An	10,000	A	10,700
						N	50	Di	43,000			F	21,500
10-15	1					PI	50					M	150,600
												Sy	21,500
	l											Т	32,200
	(B	40	D	30	300	An	150	Di	30,700			A	7,600
			L	75		N	110					F	7,600
15-22	1					Pl	35					М	668,500
	1											Т	15,300

TABLE V—Continued BLACK STURGEON BAY, JULY 21, 1922

TABLE V-Continued

CHIEF'S	BAY,	JULY	20,	1922
---------	------	------	-----	------

Depth (metres)	CI	adocera	Сор	epoda	Nauplii	Re	otifera	Pro	tozoa	Green and blue-green Algae	D	iatoms
	(B	210	C	1,340	2,580	An	3,600	С	480		A	107,600
	D	480	D	700	_100.0	N	2,000	Co	430		F	301,300
0-5	10	100	-	100		Р	430	D	160		M	903,800
0-0						-		Di	1,356,000		Т	495,000
	(1						E	50			
	(B	430	С	1,180	4,890	An	3,000	Di	172,000		A	86,100
	D	320	D	650	2,000	As	100				F	129,200
5-10	10	320	2	000		N	1,400				M	495,100
						P	160				Т	215,300
	(B	1,600	C	6,700	49,000	An	8,400	Di	538,000		A	287,100
	D	3,500		18,000	10,000	As	2,400		1.		F	179,400
10-13	10	0,000	D	10,000		C	2,000				M	5,270,000
						N	1,880				Т	788,900

MACKAY: PLANKTON OF THE SHALLOW BAYS

Depth (metres)	Cla	idocera	Сор	epoda	Nauplii	Re	otifera	Pi	rotozoa	blu	een and le-green lgae	D	liatoms
0–5	B D Di	110 7,500 50		3,700 6,500 1,600	5,600	An C N S	540 2,300 5,480 50	C Co D	1,130 100 1,670		$150,600 \\516,400 \\172,000 \\172,000 \\21,500 \\129,100$	A F T	107,600 107,600 1,850,000
5–10		160 910	C D E	1,180 370 50	2,580	An N P	370 1,240 210	C Co	210 50	An Aph C M S	161,400 113,000 48,400 48,400 16,100	A F M Sy T	64,500 64,500 64,500 32,200 871,600
10–15	BD	50 910	C D L	160 320 320	5,000	An N	750 320	D	50	An Aph S	10,760 32,200 10,750	A F M T	32,200 64,500 96,800 280,000
15–18		90	D L	270 360	3,500	An C N P	980 90 270 90	Co	90			A F M Sy T	53,800 53,800 35,860 17,900 340,700

TABLE V-Continued

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued HUMBOLDT BAY (OUTER), AUGUST 8, 1922

Depth metres)	Cladocera		Сор	epoda	Nauplii	Re	otifera	Pr	rotozoa	blue	en and e-green lgae	E	liatoms
	B	320	CD	3,000 1,180	5,480	An G	28,080 540	C Co	55,300 7,850	Aph	134,400	A F	1,291,000
0-5			D	1,100		N	2,800	Di	53,700			г Т	295,800
0-0	{					PI	110		00,100			1	200,000
						P	3,120						
	l					S	110						
	D	50	C	1,070	2,740	An	4,950	С	11,940	Aph	32,280	A	505,800
5-10	1		D	860		G	50					F	86,080
	1					N	700	Co	2,150			M	43,040
	l		_		20.25							T	107,600
				Hux	BOLDT BAY	(INNER), August	8, 19	922				
	(A	540	С	6,990	17,480	An	130,400	С	234,500			Á	322,700
	Di	800	D	20,170		C	8,070	Co	1,340			F	107,500
0-1	S	270	E	270		N	7,530	D	3,500			T	322,700
						Pl	540						
	(P	8,800						

200

MACKAY: PLANKTON OF THE SHALLOW BAYS

Depth (metres)	Cladocera	Copepoda	Nauplii	Ro	otifera	Pro	otozoa	Green and blue-green Algae	I	Diatoms
	Ĺ	C 2,180	45,900	An	2,180	С	4,370	38,240	Су	546,000
018	1			M	2,180	Go	2,180		F	1,092,000
0~.10				N	6,550				N	2,185,000
	l			Pl	6,550				Sy	1,092,000
				P	10,930					
			48,100	N	2,180	C	4,370		A	1,092,000
	1 -			Pl	4,370				Co	546,000
018	}			P	13,120				N	3,824,000
									Sy	2,732,000
	(B 1,700	C 4,280	23,950	An	855	С	15,400		A	1,924,000
	1,.00	C 1,200	20,000	G	855	D	1,700		Co	855,000
				M	855	Co	1,700		F	1,282,000
				N	855	00	-,		N	2,351,000
043	1			Pl	18,820				Sy	1,069,000
				P	39,360					-,000,000
	1			S	3,400					

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued McL. BAY, AUGUST 11, 1923

TABLE	V-ANALYSIS	OF	PLANKTON	CATCHES—Continued
	OMBABIKA	BA	Y, AUGUST	9, 1922

Depth (metres)	Cla	docera	Сор	epoda	Nauplii		Rotifera		Protozoa		reen and lue-green Algae	Di	atoms
0–5	B D Di	110 50 50		1,700 2,470	2,960	An N P R	3,340 4,220 590 320	C Co	5,760 650	Aph C	107,600 64,560	A F T	150,600 172,200 688,700
5-13	D	170	C D	170 440	2,420	An N P R	3,360 840 230 30	C Co	300 340	Ap D	33,620 6,700	A F Sy T	$215,200 \\ 47,000 \\ 20,170 \\ 107,600$

MACKAY: PLANKTON OF THE SHALLOW BAYS

202

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

ORIENT	BAY	(STATION	V),	1922	

Station	Date	Depth, metres	Cla	docera	Coj	pepoda	Nauplii	R	otifera	Pr	otozoa		Green and blue-green Algae		Diatoms
VA	June 30/22	. 58	в	850				An	3,400						13,985,400
												М	423,800	T	2,540
VB	June 30/22	. 58	B	850	C	5,000	1,690	An	23,740	Co	850		3,814,200	M	211,900
	June 00/ 22	.00	2	000	C	0,000	1,000	Co	850	Cy	1,700	00	0,011,200	N	16,528,000
								M	8,480	D	850			Sy	
								N	1,700	Di	423,800			T	12,500,000
										E	2,540				
VD	June 30/22	. 58	В	3,390	С	8,480	7,630	An	12,720	C	850	Ap	635,700	A	635,700
			D	850				Ca	3,390	Су	2,540	С	1,271,400	F	1,695,200
								M	5,930	D	2,540			M	1,059,500
								N	9,320	E	850			N	47,889,000
								Р	850					Т	2,966,000
VE	June 30/22	.58	Di	850	С	2,540	850	An	2,540	E	1,690	M	5,085,600	F	423,800
	and a second							M	4,240			S	423,800	M	423,800
								N	850					N	79,674,000
														Т	2,119,000

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	1	Rotifera		Protozoa		Green and plue-green Algae		Diatoms
VA	July 14/22	. 58	B 1,690	C 5,940	7,630	An M N	7,630 15,260 10,170	Cy	11,870 4,240 12,720	Ap C Me M Os	423,800	A F M Sy T	423,800 847,600 3,814,200 55,000,000 1,271,000 11,816,000
VΒ	July 14/22	. 58	Ac 2,540 A 850			An M N	2,540 3,390 10,170	C E	8,480 4,240	Ap C Me N Os	847,600 423,800 1,271,400 1,271,400 4,661,800		$1,271,400 \\ 2,119,000 \\ 47,041,000 \\ 3,814,200 \\ 10,595,000$
vс	July 14/22	.67	Ac 1,470 Al 1,470 B 3,670	C 730 D 1,470	3,670	An M N	4,400 2,930 9,540	С	9,540	Ap C Me M	1,100,000	F N T	3,303,000 81,474,000 17,250,000

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

ORIENT BAY (STATION V), 1922

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	Rotifera	Protozoa	Green and blue-green Algae	Diatoms
VD	July 14/22	. 58	B 1,690	C 5,080 D 850	6,780	An 3,390 M 2,540 N 14,400	C 4,200 E 2,540	Ap 5,085,600 A 847,600 C 1,271,400 Me 1,271,000 M 2,119,000	M 1,695,000 N 119,088,000 P 1,271,000
VE	July 14/22	. 58	Ce 850 P 850 S 3,400	C 850	850	N 5,930	C 12,720 E 4,240	Ap 1,271,000 C 423,800 Me 423,800 M 847,600	N 60,180,000 Sy 847,600
VA	Aug. 1/22	. 58	Ac 1,690 A 850 Al 850 E 850	C 2,540	4,240	An 4,200 M 1,690	D 2,540 E 1,690	Ap 1,483,000 C 847,000 Me 423,800 1,695,000 S 423,000	F 1,059,000 M 212,000 N 27,547,000
VB	Aug. 1/22	.58	Ac 850 A 850 Al 850 B 3,390 Di 850	C 1,690	3,390	An 1,690 Bd 1,690 M 3,390 N 5,080 Pl 1,690	D 2,540 E 3,390	An 847,500 Ap 1,695,000 Me 423,800 M 423,800	in the second

TABLE V—Analysis of Plankton Catches—Continued Orient Bay (Station V), 1922

Station	Date	Depth, metres	Cla	docera	Co	pepoda	Nauplii	R	otifera		Protozoa		Green and plue-green Algae		Diatoms
VC	Aug. 1/22	. 58	Ac		Ca	850	1,690	An	1,690	С	3,390	An	423,800	A	212,000
			AI	850	C	2,540		Bd	4,240	Cy	5,930	Ap	1,695,000	F	847,600
			E	850				M	4,240	D	4,240	Me		N	18,647,000
										E	9,320	Mo	847,600	Sy	2,966,000
														Т	21,613,000
VD	Aug. 1/22	. 58			С	850		М	850	С	10,170			N	4,661,800
										E	850			Sy	635,700
														T	1,059,500
VE	Aug. 1/22	. 58	Al	1,690	С	850	850	An	1,690	С	24,590	С	423,800	F	3,390,000
			B	850				Bd	3,400	Cy	6,780	Me	847,600	N	56,365,000
										D	3,390			Sy	635,700
										E	11,870			T	2,119,000
VA	Aug. 3/22	. 58	Ac	2,540	С	4,240	11,000	An	2,540	С	12,700	Ap	3,390,000		
			A	850				Ca	2,540	Di 1	1,059,000	С	1,271,000	F	1,059,000
			AI	850				M	2,540	D	1,690	Me	423,800	N	34,752,000
								N	6,780	E	3,390	M	1,059,000	Т	6,568,000
								Р	2,540						
VB	Aug. 3/22	.58	A	830	С	1,660	33,200	An	11,600	С	5,800	Ap	415,600	N	12,468,000
			AI	830	D	830	,	G	3,300	Cy	1,660	C	1,870,000	T	12,050,000
			В	830				N	5,800	Di	207,800	M	415,600	•	12,000,000
									.,	D	2,500	Sp	831,200		
										E	2,500	op	1,039,000		

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	Re	otifera		Protozoa		Green and plue-green Algae		Diatoms
VC	Aug. 3/22	. <mark>58</mark>	Al 4,980 B 1,660 D 830	C 1,660 D 1,660	6,640	An Bd M N	6,640 1,660 2,500 2,500	C Cy E	7,500 830 1,660	Ap M Mo	1,039,000 415,600 623,400	N T	8,312,000 8,935,000
VD	Aug. 3/22	. 58	Al 850 B 3,400	C 1,700	1,700	An N	4,240 4,240	C E	6,780 3,400	Ap Me	212,000 423,800	F N T	2,119,000 15,681,00 635,700
VE	Aug. 3/22	. 58	Ac 850 Al 850	C 850	8,500	An N	4,240 2,540	С	15,260	Ap	423,800	F N T	22,754,000 18,223,000 1,695,000
V A	Aug. 19/22	.52	Ac 950 B 8,500 D 950 Di 950 P 950	C 1,890 D 2,840	4,730	An Ca N Pl	17,000 1,900 22,700 5,670	C Cy D	7,570 1,900 5,670	Ap Me M U	946,000 946,000 946,000 473,000	A F M N P Sy T	473,000 473,000 948,000 17,500,000 1,419,000 946,000 4,730,000

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

ORIENT BAY (STATION V), 1922

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	Rotifera	Protozoa	Green and blue-green Algae	Diatoms
V B	Aug. 19/22	.50	Ac 980 B 3,900 E 980	C 1,960	5,000	An 4,900 N 12,800 Pl 4,900	C 2,950 Co 2,950 Cy 5,000 D 8,850 E 18,700		N 17,213,000 T 5,901,000
vc	Aug. 19/22	. 52	Ac 950 Al 3,700 B 8,400	C 2,800	950	An 4,700 M 2,800 N 3,700	Cy 4,700 D 4,700 E 15,140	C 1,419,000	N 18,447,000 F 1,419,000 T 11,825,000
VD	Aug. 19/22	.46	B 4,200		2,120	An 7,400 N 8,500	C 3,180 Cy 1,000 D 2,100 E 6,400	Ap 2,675,000 C 1,600,000	N 11,770,000 F 1,070,000 T 535,000
VE	Aug. 19/22	. 56	B 4,400	C 880	2,630	An 10,540 Bd 1,750 M 2,630 N 4,400	C 13,170 Co 2,630 D 5,270 E 9,660	Ap 4,390,000 Me 878,000	F878,000N37,754,000P878,000T878,000

210	
MACKAY:	
PLANKTON	
OF THE	
E SHALLOW	

Green and

blue-green Algae

508,800 Co

M N

T

Ni

Т

820,000 Co 9,020,000

G

Ni

Sy T

848,000 F

339,200 N

820,000 Am

169,600

An

A

Sc

An

Ap

Me

Sc 1,640,000

Diatoms

169,600

169,600

169,600

339,200

339,200

169,600

169,600

508,800

820,000

Cy 1,640,000 820,000 M 1,640,000 N 46,740,000 BAYS 820,000

4,920,000 9,840,000

				0	RIENT I	BAY (STA	TION	V), 1923	1				_	
ate	Depth, metres	Cla	docera	Co	pepoda	Nauplii		Rotifera		Protozoa	-		Ľ	liatoms
2/23	.51	В	3,000	C D E	2,300 770 1,500	26,990	An G M N P S	5,400 3,850 9,260 16,970 133,450 26,230	E	2,300	An D	385,800 385,800	F M N Sy T	771,600 1,350,000 8,294,000 385,800 1,350,000
12/23	.47	B D	700 700	C E	3,480 700	18,830	An M N P	14,250 2,790 8,230 63 490	A C D	2,000 73,950 9,000	An Os	1,046,000 348,800	A Co M N	1,046,000 523,000 872,000 3,836,800
12/23	.25	D S	1,570 1,570	С	4,700	11,000	S N P	23,720 12,590 25,180		3,100 69,250 3,100	Ар	1,180,000	T Co F M N Sy	697,600 1,573,600 786,800 1,967,000 1,180,000 1,573,60
19/23	.56	D	700			10,500	An N P	2,800 14,700 33,700	C D Di	46,380 2,800 527,000	An	175,000	T A Co F M	1,573,60 351,40 351,40 351,40 527,00
	2/23 12/23 12/23	metres 2/23 .51 12/23 .47 12/23 .25	ate metres Cla 2/23 .51 B 12/23 .47 B D 12/23 .25 D S	netres Cladocera (2/23) .51 B 3,000 (2/23) .47 B 700 D 700 (12/23) .47 D 1,570 S 1,570	Depth, metres Cladocera Cop (2/23) .51 B 3,000 C (2/23) .51 B 3,000 C (2/23) .47 B 700 C (12/23) .47 B 700 C (12/23) .47 D 700 E (12/23) .25 D 1,570 C (12/23) .25 D 1,570 C	Depth, metres Cladocera Copepoda (2/23) .51 B 3,000 C 2,300 D 770 E 1,500 (2/23) .51 B 3,000 C 2,300 D 770 E 1,500 (12/23) .47 B 700 D 700 C 3,480 E 700 (12/23) .25 D 1,570 S 1,570 C 4,700 (12/23) .25 D 1,570 S 1,570 C 4,700	Depth, metres Cladocera Copepoda Nauplii (2/23) .51 B 3,000 C 2,300 26,990 D 770 E 1,500 D 770 E 1,500 12/23 .47 B 700 C 3,480 18,830 12/23 .47 D 700 E 700 18,830 12/23 .25 D 1,570 C 4,700 11,000 19/23 .56 D 700 C 1,400 10,500	Depth, metres Cladocera Copepoda Nauplii 12/23 .51 B 3,000 C 2,300 26,990 An D 770 G E 1,500 M 12/23 .47 B 700 C 3,480 18,830 An 12/23 .47 B 700 C 3,480 18,830 An 12/23 .47 D 700 E 700 M N 12/23 .25 D 1,570 C 4,700 11,000 N 12/23 .25 D 1,570 C 4,700 11,000 N 19/23 .56 D 700 C 1,400 10,500 An	Depth, metres Depth, metres Cladocera Copepoda Nauplii Rotifera 12/23 .51 B 3,000 C 2,300 26,990 An 5,400 D 770 G 3,850 E 1,500 M 9,260 N 16,970 F 133,450 S 26,230 12/23 .47 B 700 C 3,480 18,830 An 14,250 12/23 .47 B 700 C 3,480 18,830 An 14,250 12/23 .47 B 700 C 4,700 11,000 N 12,290 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 19/23 .56 D 700 C 1,400 10,500 An 2,800 19/23 .56 D 700 C 1,400 10,500 An	Depth, metres Cladocera Copepoda Nauplii Rotifera 12/23 .51 B 3,000 C 2,300 26,990 An 5,400 A 12/23 .51 B 3,000 C 2,300 26,990 An 5,400 A 12/23 .51 B 3,000 C 2,300 26,990 An 5,400 A 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 Ce 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 Ce 19/23 .56 D 700 C 1,400	ntemetresCladoceraCopepodaNaupliiRotiferaProtozoa $2/23$.51B3,000C2,30026,990An5,400A1,500D770G3,850Ce4,500E1,500M9,260C108,760N16,970D6,170P133,450Di3,665,000S26,230E2,300V23,14012/23.47B700C3,48012/23.47B700C3,48012/23.25D1,570C4,70011,000N12,590Ce3,100D700C14,000N12,59012/23.25D1,570C4,70019/23.56D700C1,40019/23.56D700C10,500An2,80019/23.56D700C1,400N14,700D2,800	Depth, metresDepth, metresCladoceraCopepodaNaupliiRotiferaProtozoaG b $2/23$.51B3,000C2,30026,990An5,400A1,500An D D 770G3,850Ce4,500DE1,500M9,260C108,760N16,970D6,170P133,450Di3,665,000S26,230E2,300V23,14012/23.47B700C3,48012/23.47B700C3,48012/23.25D1,570C4,70012/23.25D1,570C4,70019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C1,40019/23.56D700C19/23.56D700C19/23.56D700 </td <td>Depth, metres Cladocera Copepoda Nauplii Rotifera Protozoa Green and blue-green Algae 2/23 .51 B 3,000 C 2,300 D 770 26,990 An 5,400 A 1,500 An 285,800 2/23 .51 B 3,000 C 2,300 D 770 G 3,850 Ce 4,500 An 285,800 2/23 .51 B 3,000 C 2,300 D 770 G 3,850 Ce 4,500 D 385,800 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 Ce 3,100 D<td>Depth, metres Cladocera Copepoda Nauplii Rotifera Protozoa Green and blue-green Algae 12/23 .51 B 3,000 C 2,300 D 770 26,990 An 5,400 A 1,500 An 385,800 F 12/23 .51 B 3,000 C 2,300 D 770 26,990 An 5,400 A 385,800 F 12/23 .51 B 700 C 3,480 18,830 An 14,250 A 2,000 An 385,800 M 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 A 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 A 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 Ce 3,100 N N 12/23 .25 D 1,570 C 4,700 11,000 N 1</br></br></br></td></td>	Depth, metres Cladocera Copepoda Nauplii Rotifera Protozoa Green and blue-green Algae 2/23 .51 B 3,000 C 2,300 D 770 26,990 An 5,400 A 1,500 An 285,800 2/23 .51 B 3,000 C 2,300 D 770 G 3,850 Ce 4,500 An 285,800 2/23 .51 B 3,000 C 2,300 D 770 G 3,850 Ce 4,500 D 385,800 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 Ce 3,100 D <td>Depth, metres Cladocera Copepoda Nauplii Rotifera Protozoa Green and blue-green Algae 12/23 .51 B 3,000 C 2,300 D 770 26,990 An 5,400 A 1,500 An 385,800 F 12/23 .51 B 3,000 C 2,300 D 770 26,990 An 5,400 A 385,800 F 12/23 .51 B 700 C 3,480 18,830 An 14,250 A 2,000 An 385,800 M 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 A 12/23 .47 B 700 C 3,480 18,830 An 14,250 A 2,000 An 1,046,000 A 12/23 .25 D 1,570 C 4,700 11,000 N 12,590 Ce 3,100 N N 12/23 .25 D 1,570 C 4,700 11,000 N 1</br></br></br></td>	Depth, metres Cladocera Copepoda Nauplii Rotifera Protozoa Green and blue-green

7,460

6,100

18,000

Copepoda Nauplii

C 1,350

C 3,280

D 1,640

Depth,

metres

. 58

. 58

.24

Cladocera

D

680

Al 1,640

P 1,640

R 1,640

Date

July 4/23

July 4/23

July 4/23

Station

V 1

V 2

V 3

ORIENT BAY (STATION V), 1923

Rotifera

N 1,350

680

680

3,390

6,560

3,280

An

P

N

M

N

Protozoa

C 8,120

C 12,890

C 6,560

Ce 4,920

Cy 3,280

D 3,280

1,350

D

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

Station	Date	Depth, metres	Cla	docera	Co	pepoda	Naupli	1	Rotifera		Protozoa		Green and blue-green Algae		Diatoms
V 2	July 19/23	.46		1,700		5,130	11,900		6,800	A	7,700	An	213,800	A	427,600
			R	850		2,560		M	3,400	Ce	13,680	C	641,400	Co	855,200
			S	850	E	1,700		N	27,360	C	37,640	Os	427,600	Cy	
								P S	20,500 5,100	D	12,820 1,924,000	Sc	427,600	F M	1,069,000 2,565,000
								5	0,100		1,021,000				13,469,000
														Su	641,400
														Sy	855,200
														Т	2,352,000
V 3	July 19/23	.25	D	1,570	С	4,700	11,000	An	1,570	Ce	3,150	Ap	1,180,000	Co	1,573,600
				1,570				M	1,570	С	69,250	•		F	786,800
								N	12,590	D	3,150			M	1,967,000
								P	25,180	Di	786,800			N	1,180,000
														Sy	1,573,600
														Т	1,573,600
V1	July 31/23	.56	В	1,400	С	700	3,500	An	7,730	С	85,740	An	175,000	Т	527,000
			D	700				G	9,830	Di	3,689,000				
								N	7,000		A CALL AND A CALL				
								Pl							
								Р	8,400						

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued ORIENT BAY (STATION V), 1923

TABLE V—ANALYSIS OF PLANKTON CATCHES—Continued Orient Bay (Station V), 1923

Station	Date	Depth, metres	Cladocera	Cor	pepoda	Nauplii	1	Rotifera	ļ	Protozoa		Green and plue-green Algae	I	Diatoms
V2	July 31/23	.43	B 7,300	С	1,800	12,800	An	20,100	С	320,200	Sc	686,400	A	1,591,000
• •	July 01/20				4,570		G	22,860	D	3,650			M	686,400
							N	11,900	Ep	3,650			N	895,000
							P	102,500					Sy	447,600
													T	372,800
	Lala 21 /92	.23					An	30,790	Ce	3,400	С	855,000	A	427,700
V 3	July 31/23	.20					G	1,700	C	58,170	Mo	855,000	Co	2,138,500
							N	11,900	D	1,700			Cy	1,283,000
							PI	1,700		,990,000			F	1,283,000
							P	3,400		,,			G	1,710,800
							~	0,200					M	427,700
													N	8,981,000
													St	855,000
	1												Sy	2,138,000
													Т	4,277,000
	10.000		B 2,860	C	3,570	10,000	An	4,290	C	20,740	С	357,600	A	5,900,000
V1	Aug. 13/23	.55			1,430	10,000	G	2,140		,430,000			M	5,000,000
			D 2,860	D	1,100		N	7,150	Ep	2,140			N	357,000
							P	3,570	-F	-,			Т	2,324,000
wa	1 19/09	.44	B 24,100	C	2,680	13,400	An	14,300	С	14,300	Mo	223,600	A	10,956,000
V 2	Aug. 13/23	. 41	D 900	C	2,000	201200	N	8,000		,565,000			M	5,366,000
			D 900				P	9,800		,,.			N	1,118,000
							-	0,000					T	1,341,000

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	1	Rotifera		Protozoa	C	Green and blue-green Algae		Diatoms
V 3	Aug. 13/23	.20	Al 1,960	C 1,960		An M N P	5,960 1,960 3,930 3,930	A C Di E	3,900 7,860 983,600 3,930	Mo	8,850,000	A C C F M N T	
V 1	Aug. 19/23	. 55	B 4,290	C 1,430	5,700	An G N P	17,880 6,400 7,150 15,740	A Ce C Cy D Di	2,860 3,570 55,000 2,140 2,860 715,000	С	536,400	A C F M N Sy	36,117,000 357,600 2,503,000 2,860,000 4,291,000 357,600 357,600
V 2	Aug. 19/23	.46	B 4,270		2,560	An N P	9,400 3,420 14,500	A Ce C Cy Di I Ep E	$10,260 \\ 7,690 \\ 54,720 \\ 2,560 \\ 1,496,000 \\ 17,000 \\ 5,000 \\ $	C M	1,496,000 855,000 1,496,000	T A C F M N N P St Sy	3,397,000 25,000,000 2,565,000 2,352,000 4,917,000 8,765,000 641,400 855,000 1,069,000 427,600

TABLE V—Analysis of Plankton Catches—Continued Orient Bay (Station V), 1923

TABLE V—ANALYSIS OF PLANKTON CATCHES—Continued ORIENT BAY (STATION V), 1923

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	R	otifera	F	rotozoa		reen and ue-green Algae		Diatoms
V 3	Aug. 19/23	.28	A 2,810		5,620	An M P	5,620 2,810 2,810	A C Cy	7,000 15,400 2,800	Mo	351,400	A Co M N Sy T	$15,110,000 \\702,800 \\4,919,600 \\7,028,000 \\2,108,000 \\5,271,000$
V1	Sept. 11/23	. 50	B 9,440	C 2,360	2,360		7,870 6,290 3,930	A Ce C Co Di E	3,140 1,570 63,740 1,570 196,700 2,360	An Ap M	196,700 196,700 590,000	A Co Cy F M N Sy T	2,360,000 590,000 393,000 786,800 5,704,000 3,147,000 590,000 1,770,000
V 2	Sept. 11/23	.44	B 8,000	C 6,200	1,790	An N P	1,790 1,790 1,790	С	30,400			A M T	1,341,600 1,341,600 894,400
V 3	Sept. 11/23	.30	B 1,300 R 1,300	C 1,300	1,300		7,860 1,300	A Ce C El	7,860		1,311,000 983,400	A N Sy T	327,800 3,278,000 655,600 2,622,400

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii		Rotifera	P	rotozoa		reen and lue-green Algae		Diatoms
VI 1	Aug. 4/23	. 63	B 5,580	C 4,340	20,610	A	29,970	A	2,500	Ap	468,000	A	1,560,000
			C 620			С	23,740	С	16,240	С	156,000	F	312,000
						G	11,870	Co	1,000	D	624,000	M	312,000
						M	4,340	D	1,000		624,000	N	2,808,000
						N	3,720	Di 4	,216,000	Me	156,000	St	312,000
						Pl	6,200					Sy	2,186,000
						Р	63,080					Т	1,872,000
						S	2,490						
VI 1†	Aug. 7/23	.57	B 4,000		5,700	A	6,880	A	1,100			A	1,115,000
						С	3,440	С	5,700	С	159,300	F	318,600
						G	5,730	D	2,300	D	477,900	M	477,000
						M	570	Di 3.	500,000	Me	159,300	N	955,800
						N	570			M	318,600	Sy	318,600
						Pl	2,280					T	318,600
						P	20,000						
						S	13,770						
VI 2*	Aug. 7/23	.68	B 4,000		4,000	An	26,380	С	9,750			A	1,147,000
						С	570		736,000			F	143,000
						G	26,380					M	143,000
						N	570					N	573,000
						Pl	7,450					Sy	286,700
						Р	8,000					Co	430,000

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued ORIENT BAY (STATION VI), 1923

†West arm, Station VI.

*East arm, Station VI.

TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued

ORIENT BAY (STATION VI), 1923

Station	Date	Depth, metres	CI	adocera	Co	pepoda	Nauplii	J	Rotifera	P	rotozoa	ы	reen and ue-green Algae	1	Diatoms
VI 1	Aug. 19/23	.61	В	1,920	С	640	18,000	A	88,900	A	3,840	D	322,600	A	9,192,300
								G	26,880	С	26,240		322,600	Co	
								M	1,900	Co	640	M	483,900	Су	645,200
								Pl	21,120	D	1,280	Me	161,300	F	483,900
								P	117,700		4,514,000			M	2,419,500
								S	78,700	E	2,560			N	4,514,000
														Т	1,451,700
														Sy	177,400
VI 2	Aug. 19/23	.61	A	1 640	С	3,840	19,200	An	52,250	С	14,840	с	161,300	A	9,031,000
			В	4,480				G	14,190	Di	2,742,000	Μ	483,900	M	1,774,000
								N	1,920					N	2,257,000
								Pl	8,380					St	161,300
								Р	171,600					Sy	161,300
								S	110,400					T	967,700
VI 2	Aug. 29/23	. 53	В	740	С	740	8,900	An	9,650	С	1,500			A	928,000
								Pl	5,200	Di	1,300,000			Μ	371,200
								P	3,700		Section 1			N	556,800
								S	32,670					Sy	556,800
									and the second					T	185,600

Station	Date	Depth, metres	Cladocera	Copepoda	Nauplii	I	Rotifera	P	Protozoa		reen and lue-green Algae	I	Diatoms
VI 1	Aug. 29/23	. 53	Al 740 B 1,480	C 1,480	15,590	An Pl P S	20,780 3,700 3,700 28,200	C Di	2,230 928,000	Mo	185,600	A F N Sy T	556,000 185,600 1,484,800 556,800 371,200
VI 1	Sept. 11/23	.49	B 1,600	C 1,600	4,800	An N P S	5,620 1,600 4,000 4,800	Di Ep	602,000 406,400	An	200,700 200,700	A M N	200,700 200,700 200,700
VI 2	Sept. 11/23	.49			6,400	An P S	13,650 1,600 7,230			An	200,700 200,700	N Sy	200,700 602,000
VII 1	July 20/23	2	B 210	C 750 D 430	3,550	An G N Pl P	1,400 210 210 6,890 650	C Co D Di	3,340 650 320 86,000	O Os	86,000 731,600	A N Sy	129,100 43,000 86,000

TABLE V—Analysis of Plankton Catches—Continued Orient Bay (Station VI), 1923

TABLE V—Analysis of Plankton Catches—Continued Orient Bay (Station^{*} VII), 1923

Station	Date	Depth, metres	Cladocera	Cope	epoda	Nauplii	I	Rotifera	I	Protozoa		Green and blue-green Algae	E	Diatoms
VII 2	July 20/23	4	B 2,850 P - 160	C D E	910 650 50	11,350	An E G N Pl P	2,000 110 210 110 9,360 2,200	C Co D Di	1,350 110 50 64,560		64,560 21,500 43,000	A Sy	322,800 21,500
VII 1	Aug. 18/23	2	B 1,180	C 18 D	8,500 430	1,500	An G N PI P	10,330 2,580 1,600 3,000 8,600	Co	26,250 1,180 43,000	C O Os	43,000 86,000 86,000	A F Sy T	774,700 172,000 86,000 86,000
VII 2	Aug. 18/23	2	B 1,180 D 100	C I D	5,270 100	3,440	An G N Pl P	7,850 6,670 750 7,850 34,740	Co	44,760 1,500 43,000	Apl	n 43,000	A F Sy T	1,807,000 258,200 43,000 86,000

MACKAY: PLANKTON OF THE SHALLOW BAYS

218

			Sour	LADLE V-ANALYSIS OF FLANKION CATCHES-COMMMEN SOUTH OF WINDIGO ISLANDS, JULY 27, 1923	GO ISL	LANKTON	LY 27,	. 1923	nnea			
1 1	Cladocera	Cop	Copepoda	Nauplii		Rotifera		Protozoa	9 Q	Green and blue-green Algae	Di	Diatoms
	260 720	<mark>с с м</mark>	3,800 4,980 980	10,490	PNCA	390 2,400 2,100 520	UUQUY	6,560 130 4,060 45,000	An Aph	26,230 39,340	Т <mark>Sy</mark> F	111,500 26,230 26,230 19,670
		Ţ	ABLE V	TABLE V-ANALYSIS OF PLANKTON CATCHES-Continued WABINOSH BAY, JULY 28, 1923	OF PL.	ANKTON C ULY 28, 1	ATCH1 923	es-Contin	pən			
	Cladocera	Cope	Copepoda	Nauplii		Rotifera		Protozoa	0 0	Green and blue-green Algae	Di	Diatoms
DB	390 510	U L L L L L L L L L L L L L L L L L L L	3,100 3,620 770	7,360	PNCA	260 1,810 5,040 1,420	000 Dig	C 67,790 Co 650 D 260 Di 38,740	An Aph M	12,910 25,820 25,820	T Sy	155,000 90,380 232,500
	B 170 D 40	ырс	430 300 40	2,280	ADNGA	40 260 1,250 85 40	ပပိ	4,100 85			Ч <mark>Sy</mark> F A	51,640 25,820 8,600 51,640 43,040
	B 40	υA	650 85	2,020	N C An	390 40 1,390	ပပိုင်မျ	1,680 40 40 85	An M	4,300 8,600 4,300 43,040	ARST	60,240 8,600 30,120 8,600

TABLE VI-VARIATION IN THE TEMPERATURES COVERING THE PERIOD OF

INVESTIGATIONS (1922-23)

Hour	Place	Temp. air °C.	Temp. water at surface, °C.
2.30 p.m.	Orient Bay, V		
3.35 p.m.	11 11		20.5
2.10 p.m.	Black Sturgeon Bay		17.0
· 11.00 a.m.	Chief's Bay		18.0
6.00 p.m.			18.9
2.45 p.m.		24.5	23.5
3.00 p.m.		22.0	22.5
4.40 p.m.	Humboldt Bay (Inner		17.6
5.30 p.m.			15.8
3.30 p.m.	Ombabika Bay	16.6	18.6
2.15 p.m.	Orient Bay, V		20.3
3.00 p.m.	u u		24.5
2.45 p.m.			24.0
10.00 a.m.	** **		21.0
4.35 p.m.	"" " VII	26.	21.5
2.30 p.m.	South Windigo		
	Islands	19.4	17.
10.20 a.m.	Wabinosh Bay	18.	19.4
10.10 a.m.	Orient Bay, V	23.	19.0
11.00 a.m.	" " VI	18.	19.0
3.15 p.m.	" " VI	16.	17.0
	2.30 p.m. 3.35 p.m. 2.10 p.m. 11.00 a.m. 6.00 p.m. 2.45 p.m. 3.00 p.m. 4.40 p.m. 5.30 p.m. 2.15 p.m. 3.00 p.m. 2.15 p.m. 3.00 p.m. 2.45 p.m. 10.00 a.m. 4.35 p.m. 2.30 p.m. 10.20 a.m. 10.10 a.m. 11.00 a.m.	Hour Place 2.30 p.m. Orient Bay, V 3.35 p.m. """"""""""""""""""""""""""""""""""""	2.30 p.m. Orient Bay, V 26.5 3.35 p.m. """ 26.5 2.10 p.m. Black Sturgeon Bay 20.0 11.00 a.m. Chief's Bay 22.0 6.00 p.m. Gull Bay 20.0 2.45 p.m. Orient Bay, V 24.5 3.00 p.m. Gull Bay 20.0 2.45 p.m. Orient Bay, V 24.5 3.00 p.m. "" 22.0 4.40 p.m. Humboldt Bay (Inner) 17.0 5.30 p.m. Humboldt Bay (Outer) 15.0 3.30 p.m. Orient Bay, V 17.5 3.00 p.m. "" 23. 2.45 p.m. "" 26.3 10.00 a.m. "" 26. 2.30 p.m. South Windigo Islands 19.4 10.20 a.m. Wabinosh Bay 18. 10.10 a.m. Orient Bay, V 23. 11.00 a.m. """ VI 18. 18. 10.10 a.m.

10.30 a.m. McL. Bay

4.00 p.m. Bell's Bay

4.00 p.m.

5.30 p.m.

2.30 p.m.

10.00 a.m. Orient Bay, V

1.15 p.m. Orient Bay, VII

3.00 p.m. Bay of Nipigon R.

11.30 a.m. Orient Bay, VI

" " V

" " VI

" " VI

" 10/23

" 13/23

" 17/23

" 18/23

" 19/23

" 19/23

" 29/23

" 11/23

Sept. 3/23

14.

14.7

15.5

19.3

15.

13.8

17.7

12.3

11.0

14.0

16.3

17.1

15.4

17.0

17.0

17.0

15.5

11.8

220

MACKAY: PLANKTON OF THE SHALLOW BAYS

MACKAY: PLANKTON OF THE SHALLOW BAYS 221

LITERATURE CITED

- Birge, E. A., and Juday, C., 1914. A Limnological Study of the Finger Lakes of New York. Bull. U.S. Bureau Fish., Vol. XXXII; pp. 525-609.
- Clemens, W. A., 1923. The Limnology of Lake Nipigon. University of Toronto Studies. Biological Series. Pub. Ontario Fisheries Research Laboratory, No. 11.
- Clemens, W. A., and others, 1923. The Food of Lake Nipigon Fishes. University of Toronto Studies, Biological Series. Pub. Ontario Fisheries Research Laboratory, No. 16.
- Clemens, W. A., 1924. The Limnology of Lake Nipigon in 1922. University of Toronto Studies. Biological Series. Pub. Ontario Fisheries Research Laboratory, No. 17.
- Juday, C. 1916. Limnological Apparatus. Trans. Wis. Acad. of Sc., Arts, and Letters, Vol. XVIII, Part II, pp. 566-592.
- Marsh, C. D. 1901. The Plankton of Fresh Water Lakes. Trans. Wis. Acad. of Sci., Arts and Letters, Vol. XIII, pp. 163-187.
- Marsh, C. D. 1903. The Plankton of Lake Winnebago and Green Lake, Wis. Geol. and Nat. Hist. Surv., Bull. No. XII, Sci. Ser., No. 3.
- Pearsall, W. H. 1920. The Aquatic Vegetation of the English Lakes. Journal of Ecology, Vol. VIII, pp. 163-201.
- Pearsall, W. H. 1921. The Development of Vegetation in the English Lakes, considered in relation to the General Evolution of the Glacial Lakes and Rock Basins. Proc. of the Royal Soc. B., Vol. 92, pp. 259-284.
- Wilson, Alfred W. G. 1910. Geology of the Nipigon Basin, Ontario, Memoir No. 1, Dept. Mines, Geol. Survey Br., Canada.

PLATE 1-The highlands of Pijitawabic (Orient) Bay, Lake Nipigon

PLATE 2-A more evolved shore (Station V) Pijitawabic Bay, Lake Nipigon.