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a b s t r a c t

We develop the theory of biphasic somatic growth in fish using models based on the distinction

between pre- and post-maturation growth and an explicit description of energy allocation within a

growing season. We define a ‘generic biphasic’ (GB) model that assumes post-maturation growth has a

von Bertalanffy (vB) form. For this model we derive an explicit expression for the gonad weight/somatic

weight ratio (g) which may either remain fixed or vary with size. Optimal biphasic models are then

developed with reproductive strategies that maximise lifetime reproductive output. We consider two

optimal growth models. In the first (fixed g optimal), gonad weight is constrained to be proportional to

somatic weight. In the second (variable g optimal) model, allocation to reproduction is unconstrained

and g increases with size. For the first of these two models, adult growth in a scaled measure of length

has the exact vB form. When there are no constraints on allocation, growth is vB to a very good

approximation. In both models, pre-maturation growth is linear. In a companion paper we use growth

data from lake trout (Salvelinus namaycush) to test the bioenergetics assumptions used to develop these

models, and demonstrate that they have advantages over the vB model, both in quality of fit, and in the

information contained in the fitted parameters.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Size is an ecologically important property, influencing sig-
nificant characteristics of individual organisms, such as fecundity,
vulnerability to predators and availability of prey (Zivkov and
Petrova, 1993; Persson et al., 1996; Lauer et al., 2005). For a large
fraction of non-colonial marine and freshwater vertebrates and
invertebrates (Andersen and Beyer, 2006), lifetime growth in body
size is indeterminate (i.e. growth continues throughout adulthood
but at a decelerating rate). Recent studies on a wide variety of
aquatic species (e.g. vertebrates: sharks—Siegfried and Sanso,
2006; crocodiles—Tucker et al., 2006; salamanders—Leclair et al.,
2006; invertebrates: speckled crab—Pinheiro and Hattori, 2006;
bivalves—Cardoso et al., 2006; sea urchins—Kirby et al., 2006)
have used the von Bertalanffy (vB) function as a simple
description of indeterminate somatic growth patterns. This
approach has been particularly common in studies of fish (e.g.
Essington et al., 2001; Helser and Lai, 2004) where the vB function
has been used for decades (e.g. Ricker, 1975). However, the usual
energetic justification for this model is problematic. This
justification holds that metabolic costs increase linearly with
ll rights reserved.
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weight, while energy intake follows an allometric function of
weight, with an exponent less than one. Data on the relationship
between weight and metabolic costs, summarised below, gen-
erally do not support the linear relationship. Furthermore, the
traditional explanation for vB growth fails to account for the
diversion of energy to reproduction at maturation (Day and Taylor,
1997) which, in female fish, typically exceeds 15% of somatic
energy content annually (e.g. Shuter et al., 2005). Since the vB
model does provide an accurate description of many fish growth
patterns (Chen et al., 1992), it should be derivable from energetic
and evolutionary principles. Furthermore, that derivation should
provide insight into variation between species or populations in
model parameters.

Several authors (Charnov, 1993; Day and Taylor, 1997; Lester
et al., 2004), have recently suggested correcting the lack of an
energetic cost of reproduction in the vB equation by using a
biphasic growth curve, in which the somatic growth pattern prior
to maturity has a functional form that differs from post-
maturation growth. Biphasic growth in fishes has been discussed
for nearly a century, with some of the early work reviewed by Iles
(1974). In this paper, we develop an ecological and evolutionary
model of body growth and reproductive investment in both
immature and mature individuals of organisms characterised by
indeterminate growth in a seasonal environment. This allows us
to show why a variety of different models of growth result in
approximately vB growth among adults. It also allows us to
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identify circumstances when a uniphasic vB model is or is not a
good approximate description of the lifetime growth trajectory.
Finally, it shows why two previous models (Kozlowski, 1996;
Lester et al., 2004), based on optimal age-specific energy
allocations to reproduction, often produce similar predictions in
spite of different assumptions about constraints on gonad size.
While this study focuses on fish because information on fish
growth is widely available, the models developed here could be of
equal value in understanding the processes driving individual
growth in other groups of animals with indeterminate growth.

The approach we adopt is essentially a simple dynamic energy
budget (DEB) model (Kooijman, 1986, 1993; Nisbet et al., 2000,
2004; Lika and Kooijman, 2003). DEB models describe the changes
in an individual’s physiological state, in response to acquisition of
energy from food and allocation of that energy to growth,
maintenance or reproduction. Ours is a minimal bioenergetics
model with only two state variables, somatic weight and gonad
weight, and a small number of parameters (6) that can all be
estimated from growth data. We also develop simpler models
with fewer (4) parameters by assuming that allocation to
reproduction maximises standard fitness measures. This simpli-
fication greatly aids in fitting the model to available data without
sacrificing the underlying physiological mechanism. Another
benefit of this combination of physiology and evolution is that
the parameter estimates for the optimal growth models provide
significant information on aspects of the ecological milieu that
Table 1
Variables and parameters defined in this paper

Subject Symbol Paramete

Common variables W Somatic w

L Length (m

G Gonad we

P Net produ

t Age in ye

t Age in da

D Length of

Y Length of

Biphasic framework z Productio

b Productio

v ‘Size’ (mm

v0 Initial siz

pt Proportio

h Potential

g Ratio of s

O Somatic w

g Gonado–s

g0 Energy w

von Bertalanffy (vB) growth model k Rate of de

Generic biphasic model (age parameterised) a Initial inv

w Rate of de

T Last juven

Generic biphasic model (size parameterised) vC Intersect

vTþ1 Maturatio

v1 Asymptot

Optimal strategies s Yearly su

M Instantan

o Juvenile s

we Typical eg

R0 Expected

r Intrinsic r
typical population members experience (e.g. adult survival rate;
size dependence of prey availability).
2. A uniphasic model: generalised vB growth

The parameters used in this and subsequent models are
defined in Table 1. The generalised vB model (Pauly, 1981) rests
on the following assumptions: (i) energy assimilation rate is
proportional to Wb, where W is body weight; (ii) metabolic costs
are proportional to W; (iii) W is proportional to L3, where L is body
length. For all of our models, we will describe growth in terms of
the ‘size’ variable v equal to L3ð1�bÞ. In the generalised vB model, it
is v (not length) that has the standard exponential form:

vt ¼ v1 � ðv1 � v0Þ expð�ktÞ, (1)

where t is age in years, v0 is the hypothetical size at age zero and
v1 the maximum asymptotic size. Deriving this equation from
energetics assumptions (Pauly, 1981) reveals that k is proportional
to the metabolic cost coefficient and that a more natural
parametrisation, which also has better fitting properties (Gallucci
and Quinn, 1979), is to replace v1 with hð¼ v1kÞ. Under this
parametrisation, the generalised vB model has four parameters
(v0, h, b, k). To obtain lengths from Eq. (1) for fitting purposes we
use the transformation Lt ¼ v1=3ð1�bÞ

t . When we refer to growth
having a vB form, it will mean that growth obeys Eq. (1).
r Defined by

eight (g)

m)

ight (g)

ction (g days�1) of somatic tissue

ars (yrs)

ys (days)

growing season (days)

year (days)

n coefficient PðWÞ ¼ zWb

n exponent
3ð1�bÞ) v ¼ ðW=OÞ1�b

e (mm3ð1�bÞ)

n of season t devoted to somatic growth

yearly increase in size (mm3ð1�bÞ) h ¼ zOb�1ð1� bÞD
omatic to gonad wet weight energy densities

eight–length coefficient (g mm�3) W ¼ OL3

omatic index (GSI) g ¼ Gt=Wt

eighted GSI g0 ¼ g=g

celeration of growth

est. in somatic growth pt ¼ awt�ðTþ1Þ if tXT þ 1

cay of pt pt ¼ 1 if toT þ 1

ile age

size pt ¼
v1 � vt

v1 � vC
if vtXvTþ1

n size pt ¼ 1 if vtovTþ1

ic size

rvival probability

eous mortality (days�1) s ¼ expð�MYÞ

urvival probability

g weight (g)

no. of female offspring

ate of increase
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The original justification for the vB model made no reference to
the costs of reproduction (von Bertalanffy, 1938). DEB theory
assumes that these costs will be proportional to weight and apply
to juveniles as well as adults, they can therefore be absorbed into
the metabolic costs, generating vB growth curves given a constant
food supply (Kooijman, 1986, 1993). Some subsequent models
have assumed that, at maturity, a fixed fraction of body weight is
invested into reproduction (e.g. West et al., 2001; Andersen et al.,
2007). These models generate biphasic growth. However, their
assumption of continuous reproduction leads to determinate
growth if mortality is constant and reproductive allocation is
optimised at each age (Kozlowski, 1996; Thygesen et al., 2005).
Our model explicitly describes the sequence of changes in
allocation expected within a year, when growth occurs in a
seasonal environment. Under this framework evolutionary opti-
misation leads to biphasic, indeterminate growth.
3. Energetics framework for seasonal biphasic growth

Our framework for seasonal biphasic growth is based on the
following set of assumptions:
1.
 Each year of Y days starts with a growing season lasting D days,
followed by spawning, and then a period of zero growth of
length Y � D days corresponding to winter.
2.
 During the growing season, the net amount of energy available
for tissue growth per day (P), is an allometric function of
somatic weight:

PðWÞ ¼ zWb, (2)

where WðtÞ is somatic weight at time t (days). This differs from
von Bertalanffy’s assumption of different allometric exponents
for consumption and metabolism. However, Eq. (2) is consis-
tent with both interspecific (Peters, 1983) and intra-specific
studies on the weight dependence of net production in fish
(e.g. Ursin, 1979; Reiss, 1989) and other organisms. It is also
consistent with the compendia of data provided in Hanson
et al. (1997) on the weight dependence of maximum con-
sumption and resting metabolic rate for 33 species of fish: both
consumption and metabolic rate follow allometric functions of
weight; mean values for the allometric exponents are 0.69 and
0.79, respectively; within a species, differences between the
two exponents range from �0:418 to 0.03, with an average
of �0:1. Given the relatively small differences in these
two exponents, assuming a single exponent, b, is a useful
simplification. The assumption that net production is a single
power function of weight means that an organism could
potentially grow to infinite size. This unrealistic outcome is
prevented in practise by the increasing allocation to reproduc-
tion with increasing age. During winter PðWÞ ¼ 0.
3.
 For an immature organism, all energy available for growth is
allocated to somatic tissue. For a mature organism, total
weight at time t can be divided into somatic and reproductive
components (WðtÞ and GðtÞ). At the start of a year, all available
energy is allocated to somatic tissue growth. On completion of
a fraction (pt) of the growing season D (days), the organism
switches to allocating all available energy to reproductive
tissue growth. This discontinuous switch in allocation from
somatic tissue to reproductive tissue has been shown to be
optimal (Kozlowski and Teriokhin, 1999). On the Dth day of
year t (t ¼ tY þ D), the reproductive component is converted
into sexual products. Therefore, both the somatic growth
trajectory and lifetime reproductive output are determined by
the proportions of each growing season devoted to somatic
growth.
4.
 Somatic and gonad energy densities are assumed to be
independent of size, but may differ from each other. Allometric
dependence of somatic energy density on fish size (e.g. Stewart
et al., 1983) can be included in Eq. (2), by changing the
exponent of the scaling relation, but without changing its form
and the validity of the following results. Measuring net
production as rate of increase in somatic weight, the organ-
ism’s somatic weight at the end of year t is

Wt ¼

Z ðt�1ÞYþpt D

ðt�1ÞY
PðWðtÞÞdtþWt�1, (3)

where the gonad weight at spawning in year t is given by

Gt ¼ gð1� ptÞDPðWtÞ, (4)

and g is the ratio of the wet weight energy density of somatic
tissue to gonad tissue.

Much of the literature on fish growth reports on the dynamics
of length, rather than weight; this includes most formulations of
the vB model. Our weight-based framework also provides a
description of the dynamics of length because, for most species of
fish (FishBase: http://www.fishbase.org/), length is approximately
proportional to weight cubed (W ¼ OL3). We now use the ‘size’
variable v, defined as in Section 2, by

v ¼ ðW=OÞ1�b.

This is equivalent to length if b ¼ 2
3, given the standard weight–

length relationship. Differentiating v with respect to t using the
chain rule, and substituting for dW=dt using Eq. (2), we find that
dv=dt is equal to a constant. Therefore size, v measured at the end
of year t is a linear function of total time devoted to somatic
growth:

vt ¼ v0 þ h
Xt

t0¼1

pt0 , (5)

where the constant h is given by

h ¼ zOb�1ð1� bÞD.

This constant gives the annual increase in size of juvenile fish, and
thus reflects the quality of the environment for growth. It is
determined by both food availability and the energetic costs of
obtaining that food. If we substitute Eq. (2) into Eq. (4), use the
definition of h, and transform to v, then the gonad weight at the
end of the growing season is

Gt ¼
ghO

1� b
ð1� ptÞv

b=1�b
t . (6)

Thus, a lifetime account of somatic growth and reproductive
output follows directly from the lifetime allocation strategy
p ¼ ðp1; p2; . . . ; p1Þ. Within this general framework, Eq. (2) leads
directly to juvenile growth that is linear in v; however it does not
prescribe a specific form for adult growth. We used two
approaches to determine how this framework could yield vB
growth: (i) we determined the set of allocations, p, that generate
the vB equation exactly; (ii) we assumed that the allocation
strategy is determined by selection acting to maximise traditional
fitness measures, and then determined if this was sufficient to
yield vB growth.
4. Adult vB growth imposed: the generic biphasic (GB) model

Here we introduce a simple function for pt that ensures vB
growth post maturity. Let maturity occur at age T þ 1, and the

http://www.fishbase.org/
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Fig. 1. The size vt in units of h as a function of age (years) for the generic biphasic

growth model. Parameters are v0 ¼ 0, T ¼ 3 and in (A) w ¼ 0:5 with a ¼
0:25;0:5;0:75 and (B) a ¼ 0:5 with w ¼ 0:25;0:5;0:75.
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proportion of the season devoted to growth at age tXT þ 1, be
given by

pt ¼ awt�ðTþ1Þ, (7)

where a gives the proportion of the growing season in the first adult
year that is devoted to somatic growth, and w measures the annual
decrease of this proportion in the adult stage. Both parameters are
restricted to lie between zero and one, 0oao1 and 0owo1. When
v is used to measure size, the growth pattern is given by

vt ¼ v0 þ ht; tpT juvenile growth,

vt ¼ v1 � ðv1 � vT Þ expð�kðt � TÞÞ t4T ; adult growth,

(8)

with vT ¼ v0 þ hT,

v1 ¼ vT þ ha=ð1� wÞ, (9)

and expð�kÞ ¼ w. The growth strategy as a function of size is
described by

pt ¼ 1; vtovTþ1,

pt ¼
ðv1 � vtÞ

ðv1 � vCÞ
; vtXvTþ1, (10)

where

vC ¼ vT þ hða� wÞ=ð1� wÞ. (11)

This growth strategy is derived in Appendix A. We will refer to vC

as the ‘intersect size’ since it gives the size at which the two
pt � vt lines, describing the juvenile and adult strategies, intersect.
The constraint vCovTþ1 arises from the conditions on a and w.
The life history is clearly biphasic, with linear growth before
maturation, and vB growth, (as per Eq. (1)), afterwards. The
allocation strategy can also be used to determine the gonad
weights as a function of size at the end of each growing season,
substituting Eq. (10) into Eq. (6), gives

Gt ¼
ghO

1� b
vt � vC

v1 � vC

� �
vb=ð1�bÞ

t , (12)

for mature fish. The ratio of gonad weight to somatic weight (the
gonado–somatic index) can be expressed as:

g ¼
gh

ð1� bÞðv1 � vCÞ
1�

vC

vt

� �
(13)

and thus g can either increase with size, remain fixed or decrease,
according to whether vC is 40, 0, or o0, respectively. This generic
biphasic (GB) model, is specified by six parameters, v0, h, b, T, a
and w. Growth curves generated by this model are shown in Fig. 1.
5. Constraints on reproductive investment generate adult vB
growth

Lester et al. (2004) analysed a growth model that can be seen
as a special case of the GB model. They used the empirical
observation that the gonado–somatic index, g, is approximately
constant in many species of fish to justify imposing a ‘fixed g’ (FG)
constraint on an energetics framework identical to that defined in
Section 3. This is equivalent to a GB model with vC ¼ 0 and (from
Eq. (13)):

v1 ¼
h

g0ð1� bÞ
. (14)

By substituting Eqs. (11) and (14) into Eq. (9), and using the
condition vC ¼ 0, we obtain

w � expð�kÞ ¼
1

1þ g0ð1� bÞ
, (15)
where we have absorbed the constant g into a new constant
g0ð¼ g=gÞ, the energy weighted gonado–somatic index. These
expressions for v1 and k are generalisations to arbitrary b of
results in Lester et al. (2004). The FG constraint simplifies the
general GB structure, resulting in a five parameter growth model,
(v0, h, b, T, g0), that exhibits linear juvenile growth and vB adult
growth. In what follows, we refer to this model as the FG model.
6. Optimal reproductive investment generates adult vB
growth

An alternative approach to imposing vB growth through
assumptions about model structure (GB model), or imposed
constraints on parameters (the FG model), is to derive the adult
growth curve from the assumption that evolution has shaped
reproductive investment to maximise fitness. We will show that,
for two standard fitness measures, this approach generates
simple, four parameter models from our unconstrained, variable
investment framework (see Section 3) that exhibit adult growth
patterns that closely approximate a vB form.

6.1. Fitness measures

To proceed in this program, we adopt the following assumptions:
1.
 Fitness can be measured by R0 (the expected number of female
fish produced by a female over its lifetime) or r (the intrinsic
rate of population increase). R0 is the appropriate fitness
measure for a population maintained at an equilibrium density
by simple forms of density dependence while r is the
appropriate fitness measure for a population without density
dependence (Charlesworth, 1980; Mylius and Diekmann,
1995). We will focus our analyses on identifying those growth
strategies that are consistent with R0 maximisation. However,
we will also show that there is a close linkage between these
strategies and those arising from r maximisation.
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2.
 Fecundity is proportional to gonad weight at the end of each
growing season (Eq. (4)).
3.
 Mortality after some early age is constant throughout the year,
independent of age and size and denoted by the annual
survival probability s (¼ exp½�MY �, where M ðdays�1

Þ is the
instantaneous mortality rate).

Under these assumptions,

R0 ¼ l
X1
t¼1

stð1� ptÞDPðWtÞ (16)

for a given strategy p. The constant l is given by og=2we, with g
being the ratio of somatic to gonad tissue wet weight energy
density, we egg weight (assumed constant) and o the offspring
survival probability, incorporating the mortality up to some early
stage referred to above. We begin by demonstrating the similarity
between strategies that maximise R0 and strategies that maximise
r. In our model, r is given by the characteristic equation,

X1
t¼1

expð�rtÞlðtÞ ¼ 1, (17)

where lðtÞ, the expected number of female offspring of age t

attributable to a female born at time t years in the past, is given
by,

lðtÞ ¼
ogstð1� ptÞDPðWtÞ

2we
,

with somatic weight at each age Wt given by Eq. (3).
The necessary and sufficient condition for a life history to

produce a local maximum in r is that the quantityP1
t¼1 expð�rtÞlðtÞ be at a maximum, with r determined by Eq.

(17) (Charlesworth, 1980). In our case this corresponds to
maximising:

l
X1
t¼1

exp½�ðr þMÞt�ð1� ptÞDPðWtÞ,

with the auxiliary equations (17) and (3). Comparing this to
Eq. (16), it is clear that strategies that optimise r will be identical
in form to the strategies that optimise R0, but with an adjusted
mortality r þM, reflecting the non-zero growth of the population.
This result depends on the lack of frequency dependence in the
fitness of different types (Mylius and Diekmann, 1995), an
assumption that is not satisfied in some other models of optimal
reproductive allocation (Lika and Kooijman, 2003).

6.2. Maximising fitness: general net production

We now consider the lifetime allocation strategy p ¼
ðp0;p1; . . . ; p1Þ that maximises R0 without any constraints. This
problem has been treated by Kozlowski (1996) using a slightly
more general form for mortality. We will extend his results and
place them in the context of our biphasic growth model. The
strategy that maximises R0 can be found by differentiating Eq. (16)
with respect to pt for each year t and setting the resulting
equations equal to zero (Kozlowski, 1996). If some reproduction
occurs, i.e. pto1, then the optimum pt obeys:

Pt ¼ ð1� ptÞDPtP
0
t þ sPtþ1, (18)

where Pt ¼ PðWtÞ and P0t ¼ qP=qW evaluated at Wt . Eq. (18)
represents a balance between the increase in R0 associated with
switching to reproduction on the left-hand side and the benefits
of further somatic growth on the right. The first term on the right
corresponds to the effect of increased size on reproductive
potential this year and the second term encapsulates this effect
for all future years. If the following condition holds:

PtosPtþ1, (19)

then pt ¼ 1 and all of year t is devoted to somatic growth.
By setting pt ¼ 0 in Eq. (18) we can find the maximum size,

W1, which obeys:

P01D ¼
qP
qW

W1ð ÞD ¼ ð1� sÞ. (20)

Trajectories can be determined by backwards recursion from a
weight just slightly smaller than W1 using what is effectively a
dynamic programming approach. Given initial values for Wtþ1 and
ptþ1 we determine Wt by integrating weight backwards:

Wt ¼Wtþ1 þ

Z tY

tYþDptþ1

PðWðtÞÞdt. (21)

Then the optimum pt obeys:

pt ¼ 1�
Pt � sPtþ1

qP
qWt

PtD
, (22)

if PtXsPtþ1 and pt ¼ 1 otherwise. The process can then be
repeated to determine the entire growth trajectory.

For an arbitrary net production function, we conjecture that,
provided qP=qW40 and q2P=qW2o0, then ptþ1opt once inequal-
ity (18) no longer holds. Thus, initially all production will be
allocated to somatic growth until a threshold size is reached. Then
increasing periods of time will be devoted to reproduction such
that a maximum size is approached asymptotically.

6.3. Maximising fitness: allometric net production

We will now consider the unconstrained optimal growth curve
under the assumption that net production is an allometric
function of weight (Eq. (2)). Making our usual change of variables
to size v, the above method for determining an optimal trajectory
becomes a two-dimensional non-linear map backwards in time:

vt ¼ vtþ1 � hptþ1,

pt ¼ 1 if
vtþ1

vtþ1 � hptþ1
4

1

s

� �1=o

,

¼ 1�
ðvtþ1 � hptþ1Þ

ho
1� s

vtþ1

vtþ1 � hptþ1

� �o� �
otherwise, (23)

where o ¼ b=ð1� bÞ. The first equation above arises because v is a
linear function of the proportion of the season devoted to somatic
growth (Eq. (5)) and the second is obtained from Eq. (22) after
substituting Eq. (2) and transforming to v. This map has a fixed
point at the maximum v:

v� � v1 ¼ oh=ð1� sÞ, (24)

where p� ¼ 0.
Eqs. (23) determine optimum growth trajectories with no

constraints, when given a final age and size. Usually we want to
find a trajectory corresponding to a specified size at age zero (v0).
This is done by starting from an arbitrarily chosen size vy that is
slightly smaller than v1. Below we describe how to find py which
will be close to zero in this region, using a linear stability analysis.
We then iterate the map until v is smaller than v0. Given n as the
number iterations required to do this, then age y, associated with
vy, is determined as n� 1. For any given vy we can, by iterating the
map, determine the deviation between the predicted size at
age zero, and the required value v0. We then solve numerically for
the vy that makes this deviation zero. Because Eqs. (23) can
be written as functions of the ratio v=h, and because size obeys
Eq. (5), the timings of the annual switches from somatic growth to
reproduction only depend on h through its effect on the initial
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rescaled size v0=h. This procedure defines a new growth model,
based on four parameters (v0, h, b, s), that we call the ‘variable g’
optimal growth model (VGO).

6.3.1. The optimal switching strategy

A useful way to describe the growth curve in the case of an
allometric net production is in terms of the optimal ‘switching
strategy’ pðvÞ. This function gives the optimal proportion of the year
devoted to somatic growth pt as a function of size at the end of that
year vt. It can be determined numerically using Eq. (23). To obtain
growth trajectories from pðvÞwe integrate size through each season
until the switching strategy is intersected. At that point allocation
switches to reproduction and the size reached is the starting point
for next year’s growth. In the vicinity of the fixed point, we can
determine pðvÞ. We begin by performing a linear stability analysis
near v1, the details of which are given in Appendix B. It is easiest to
do this in reversed time so that we start at the fixed point. The
stability analysis reveals that one eigenvalue is greater than one
(eþ) and one smaller than one (e�). The fixed point is therefore a
saddle. The larger eigenvalue is given by

eþ ¼
1

2
1þ sþ

1� s

o

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4s

1þ sþ
1� s

o

� �2

vuuut
0
BBB@

1
CCCA. (25)

All optimum growth trajectories will asymptotically approach
the fixed point along the separatrix with eigenvalue greater than
one (eþ), because in forward time this will be the stable separatrix.
Consequently, in the vicinity of the fixed point, pðvÞ is given by the
eigenvector corresponding to this eigenvalue:

pðvÞ ¼ ½eþ � 1�
ðv1 � vÞ

h
. (26)

The optimal strategy in the vicinity of the asymptotic size is a
linearly decreasing function of v, and, just as in our formulation of
the GB model (see Eqs. (10)) this leads to an optimal trajectory with
a vB form:

vt ¼ v1 þ ðvl � v1Þ expð�lnðeþÞ½t � l�Þ,

where l is sufficiently large that vl is close enough to v1 for the
linear approximation to be valid.

The linear stability analysis gives us insight into how the
parameters of the VGO model affect the maximum size and the
rate at which it is approached. From Eqs. (24) and (25) we see that
increasing h will increase v1 but not change the rate at which it is
approached. Increasing b increases v1 but decreases eþ and the
rate at which the asymptotic length is reached. Increasing b
also increases the observed growth, presumed to be length as
Lt ¼ v1=3ð1�bÞ

t . The effect of increased survival s is to increase v1.
Numerical investigation reveals that pðvÞ is not only linear near

v1, but that this holds to a good approximation over the whole
range of v for which pðvÞo1. Fig. 2 gives the optimal switching
strategies at fixed s for three different values of b. The relation-
ships are approximately linear and approach Eq. (26) as v! v1
for all values of b. In general if we denote vC as the point at which
pðvCÞ ¼ 1, then the straight line approximation to pðvÞ is

p̂ðvÞ ¼
v1 � v

v1 � vC
. (27)

Consider Eqs. (23) when b ¼ 1
2, in this case the equations are linear

and the approximation holds exactly. We can determine vC by
comparing Eq. (27) with Eq. (26) and substituting Eq. (25):

vC ¼ h
1

1� s
�

1ffiffiffiffiffiffiffiffiffiffiffi
1� s
p

� �
,

a monotonically increasing function of s.
Numerical results show that when bo 1
2, pðvÞ is always greater

than p̂ðvÞ and when b4 1
2, pðvÞ is always smaller than p̂ðvÞ. The

deviations are never large for b values in the empirically observed
range. This is illustrated in Fig. 3 where we show the minimum
(maximum) value of p̂ðvÞ � pðvÞ when bo0:5 (b40:5) over the full
range vCpvpv1 as a function of s and b (note that this is
independent of h). Realistic s and b values both fall around 0.7 for
which the maximum deviations are less than 4%. In addition when
b40:5 these deviations will not accumulate along a trajectory.

The linear form for the switching strategy equation (27) only
holds when vXvC; otherwise all excess production is allocated to
somatic growth (pt ¼ 1). For general b, we determine vC

numerically as the size for which vtþ1=vt ¼ ð1=sÞ1=o. Combining
these two components, the complete switching strategy given our
approximation is then ‘piece-wise’ linear:

pðvÞ ¼ 1; vovC ,

pðvÞ ’
v1 � v

v1 � vC
; vXvC . (28)

If the switching strategy is a linearly decreasing function of size,
as it is for adults in Eqs. (28), then growth will have the vB form.
Consequently to a good approximation the optimal growth curves
are described by the GB model (Eqs. (8)), with linear growth in
size before maturation and vB growth after maturation. This is
illustrated by Fig. 4. However, we now have the restriction vC4vT ,
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because maturation occurs in the first year that the final size is
greater than vC . As a result vC must be greater than zero and g will
increase with size.

We have focused on the optimal strategy when net production
is an allometric function of weight, but as discussed in Section 2 a
more general form for the net production would be to have two
allometric terms, corresponding to the assimilation rate minus the
metabolic costs. That results in a unimodal net production with a
maximum at Wmax. In Appendix C, we consider the optimal
strategy for this case, and show that growth ceases before net
production reaches its maximum (W1pWmax) and that provided
(W15Wmax) the resulting growth curves can be approximated by
the VGO model.

6.4. Maximising fitness: the FG model

In the following sections, we will find it useful to compare the
performance of the VGO model with a version of the FG model
that incorporates the assumption that selection has maximised
lifetime reproductive investment. We call this model the fixed g
optimal growth model (FGO). To derive the FGO model, we
need an expression for R0. By noting that, under the FG model,
the gonad weight at the end of each season is equal to gWt ,
weighting this by the probability of surviving to spawn st ,
transforming to size vt and substituting from Eqs. (8) with
vC ¼ 0, we get:

R0 ¼ lOg0sT
X1

t¼Tþ1

st�T ½v1 � ðv1 � vT Þ expð�kðt � TÞÞ�1=1�b, (29)

where from Eq. (15), k is a simple function of g0 and b. For a set of
feasible values for v0, h, b and s, numerical investigation shows
that there is a unique pair of values for g0 and T that maximises R0.
This pair of values defines the optimum reproductive allocation
strategy embodied in the FGO model. The FGO model is
parameterised by the same four parameters (v0, h, b, s) that
define the VGO model. It also shares with the VGO model the
property that the allocation strategy is a function of v0=h, s and b
only. This occurs because the optimum strategy depends only on
the summation term in Eq. (29) and h factors out of that term
leaving it dependent only on the ratio v0=h.
7. Behaviour of optimal allocation strategies

Both the VGO and the FGO models exhibit expected (Abrams
and Rowe, 1996; Day and Taylor, 1997; Lester et al., 2004)
responses to increased survival probability: delayed maturation
and decreased investment in reproduction post-maturation. This
is shown for the FGO model in Fig. 5A where T increases and g0

decreases with increasing s. The effect of b on maturation and
investment in reproduction is similar to that of s for both models
(illustrated for the FGO model in Fig. 5B): increasing the
production scaling exponent favours somatic growth over repro-
duction. Despite similar qualitative behaviour, the FGO and VGO
models differ substantially in the maturation sizes and asymptotic
sizes they predict for given values of s and b (Fig. 6). Asymptotic
and maturation sizes increase with survival probability for both
models but under the VGO model, fish have smaller asymptotic
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sizes and, unless s is small, mature at a smaller size. Asymptotic
and maturation sizes also increase with b at fixed s for both
models. In the VGO model we have an explicit expression for the
asymptotic size (Eq. (24)) from which the dependence on s and b
can be directly determined. When we compare (Fig. 7) the FGO
and VGO growth trajectories and optimal allocation strategies, we
see that the VGO strategy invests more in reproduction both
earlier and later in life than the FGO strategy. The FGO strategy is
forced, by the fixed g constraint, to begin reproductive allocation
later in life with an abrupt shift of resources to a level that initially
exceeds that exhibited by the VGO strategy. Over time, the
gradually increasing VGO allocation level reaches and exceeds the
fixed level predicted by the FGO model. It is important to note
that, at any point in parameter space, the maximum fitness R0

under the FGO model is only slightly less (� 1%) than that of the
VGO model, for typical values of s and b.
8. Discussion

In this study, we introduced a general framework for seasonal
biphasic growth models based on simple energetics arguments.
Using this general framework, we developed the generic biphasic
model. This model should be viewed as an alternative to the von
Bertalanffy growth model, to be applied to seasonally reproducing
species whose growth pattern is significantly altered by sexual
maturity. Its parameters quantify not only the organism’s growth
but also its energy allocation strategy. Our work generalises and
extends findings presented in a variety of earlier studies (Charnov,
1993; Kozlowski, 1996; Day and Taylor, 1997; Lester et al., 2004).

The generic biphasic model does not explain why growth post-
maturation should have a vB form. We explored two hypotheses
that produce post-maturation vB growth. Firstly, if the ratio of
gonad weight to somatic weight (gonado–somatic index g) is
constrained to be constant throughout the adult period (FG
model), then post-maturation growth is of the vB type. Secondly,
if g is unconstrained but growth is optimal in the sense of
maximising either of the two standard measures of fitness
(R0—lifetime reproductive output, or r—intrinsic rate of popula-
tion increase) given a fixed survival probability (VGO model), then
growth post-maturation has a form that closely approximates vB
growth. The former had been noticed previously in a less general
context by Lester et al. (2004), while the optimal growth model
has also been studied previously (Kozlowski, 1996). We extended
these works by deriving the limiting form of the associated
somatic growth pattern near the asymptotic size, and the
complete growth pattern for b ¼ 0:5. We showed that post-
maturation growth approximates the generalised vB form for
reasonable values (0.5–0.8) of b and that this result is indepen-
dent of the fitness measure (r or R0) maximised. This clarifies the
earlier finding of Czarnoleski and Kozlowski (1998), that optimal
growth generates lifetime growth curves that have an approxi-
mately von Bertalanffy form, by showing that this is only true for
adult growth and that it arises out of the approximately linear
form for the optimal switching strategy.

The VGO model and the FGO model both depend on the same
four parameters: the initial size v0, the annual increase in size of
pre-reproductive individuals h, the growth exponent b, and the
yearly survival probability s. Both models respond to variation in
these parameters in essentially the same way. The initial size v0,
shifts the starting point of the growth curves, while h scales all
sizes, leaving the timings of the switches from somatic growth to
reproduction essentially unchanged. The two parameters that
significantly impact the growth strategies are s and b an increase
in either favours somatic growth, delays the timing of maturation
and results in larger asymptotic sizes. The effects of increased
survival have been observed in other life history models (Charnov,
1993; Abrams and Rowe, 1996; Day and Taylor, 1997), but the
similar effects of b have not been noted previously. For the same
parameter values, maturation and asymptotic sizes are smaller in
the VGO model. In addition, g at first spawning is smaller than
in the comparable FGO model, but it reaches a higher value later
in life.

Of course, all models are simplifications of nature, and a
variety of factors we have not considered here may have some
effect on the outcome of the analysis. We have ignored between-
individual variation in environmental and genetic factors affecting
growth. Food supplies have been assumed to be constant, and
there is no representation of the dynamics of specific food items.
Potential somatic growth is a simple allometric function of
weight, however, our analysis (Appendix C) of the optimum
growth curves that result under separate intake and loss functions
shows that this is a reasonable approximation given the relatively
small differences in exponents documented by Hanson et al.
(1997). Mortality and food supplies are assumed to be indepen-
dent of time, size, and age. The simple life-history optimisation
approach assumes a constant environment and no genetic
constraints on achieving the optimum. In some cases, there are
biological reasons for suspecting that some of these modifying
factors are likely to have small effects. For example, the potential
reduction in mortality due to larger size in older adults is likely to
be offset by the increases due to senescence. It may be that many
of the potential additional details will not greatly alter our results.
For example, Jørgensen and Fiksen (2006) using a complex
optimum allocation model incorporating metabolism, migration
and stochasticity obtained a pattern of increased allocation to
reproduction and decelerating adult growth qualitatively similar
to the growth curves we derive. A long series of analyses suggest
that increased reproductive investment with increased age is
likely to be a common feature of life histories (Roff, 2002). Such a
pattern is likely to produce a pattern of decelerating growth in any
adult organism with a limited food supply or a limited capacity to
convert food into new biomass.
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The new models we present in this paper provide a link
between descriptive models used for curve fitting and detailed
energetics models that explicitly incorporate some, or all, of the
biological complexities listed above. In a companion paper
(Quince et al., 2008), we test our simple models in a variety of
ways using field and laboratory data from over 20 independent
populations of lake trout (Salvelinus namaycush), a large fresh-
water top predator. We show that our simple models provide
superior descriptions to the vB model of somatic growth patterns
observed in wild populations and that the survival probabilities
predicted by these fitted growth curves correspond with inde-
pendent estimates of the survival probabilities experienced by
those populations. These correspondences between model pre-
dictions and observed behaviour of fish in the wild suggest that
the simplifications we have made in constructing our models may
have relatively modest effects on their ability to capture
significant aspects of the growth and dynamics of real individuals
and populations.
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Appendix A. Derivation of growth strategy as a function of
size

For sizes smaller than the size at maturation vTþ1, pt ¼ 1,
because the entire season is devoted to somatic growth. For larger
sizes Eq. (7) holds. Rearranging the second line of Eqs. (8) and
using the relation expð�kÞ ¼ w, gives

v1 � vt

v1 � vT
¼ wt�T .

Substituting this into Eq. (7) and using the expression
v1 ¼ vT þ ha=ð1� wÞ, we have

pt ¼
ðv1 � vtÞ

hw
1� w

.

Finally defining vC ¼ vT þ hða� wÞ=ð1� wÞ this can be rewritten as:

pt ¼
ðv1 � vtÞ

ðv1 � vCÞ
,

which holds for vtXvTþ1.
Appendix B. Linear stability analysis near v1

In this appendix we detail the linear stability analysis near
the fixed point of the 2D non-linear map defined by Eqs. (23).
The fixed point occurs at ðp�; v�Þ where p� � 0 and v� � v1. The
asymptotic size is given by Eq. (24). Changing variables in
Eqs. (23) (xt ¼ ðvt � v�Þ=h, yt ¼ pt) and reversing time gives

xtþ1 ¼ xt � yt,

ytþ1 ¼ 1�
ðxt þ Z� ytÞ

o
1� s

xt þ Z
xt þ Z� yt

� �o� �
,

with Z ¼ v�=h ¼ o=ð1� sÞ. Here we have assumed that near the
fixed point pto1.
Linearising these transformed equations:

Dxtþ1

Dytþ1

 !
¼

1 �1

�
1� s

o
sþ

1� s

o

0
@

1
A Dxt

Dyt

 !
,

where D indicates that xt and yt are sufficiently small to ignore
higher order terms.

The Jacobian has two eigenvalues:

e� ¼
1

2
1þ sþ

1� s

o

� �
1�
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1�

4s
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0
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CCCA.

The parameters are restricted to 0pso1 and 0poo1. Thus both
eigenvalues are always real since 4soð1þ sþ ð1� sÞ=oÞ2. The
larger eigenvalue eþ is greater than one since it is a monotonically
decreasing function of o and eþ ! 1 in the limit o!1. Plotting
e� as a function of o and s reveals 0oe�o1. The fixed point is
therefore a saddle.
Appendix C. Optimal growth with an unimodal net
production

As discussed in Section 3, a more detailed description of a fish’s
energetics is to use a net production with separate allometric
functions for assimilation and metabolic costs:

PðWÞ ¼ aWb
� gWd,

with bo1 and bod. This will result in a unimodal net production
with a derivative qP=qW that decreases monotonically from 1
when W ! 0, and is equal to zero at the weight that maximises
net production, Wmax ¼ ½ab=gd�1=ðd�bÞ.

It is harder to analyse the optimum growth trajectory in this
case than for a single allometric function. The asymptotic weight
W1 will be determined by Eq. (20). This equation states that
growth ceases when qP=qW is equal to ð1� sÞ=D, a positive value
that approaches zero as survival probability approaches one.
Therefore there is a single solution for W1, that is an increasing
function of survival probability, and this asymptotic weight is
always smaller than or equal to Wmax, with equality when s ¼ 1:0.
The optimum strategy is always to asymptote to a size smaller
than that at maximum production. The actual value of W1 must
be determined numerically.

The complete optimum trajectory can also be derived for this
production function using Eq. (22) and integrating weight back-
wards, Eq. (21). As discussed in Section 3 there is evidence that
d� b is small and for typical survival probabilities this leads to an
asymptotic weight which is much smaller than the weight at
maximum production, W15Wmax. We have shown numerically
that in this case the optimum allocation strategy generates age-
length curves indistinguishable from those produced by a single
allometric function, i.e. the VGO model, but with an exponent that
is smaller than b—over the realised range of sizes the unimodal
net production can be approximated by a single allometric
function. For parameter values where W1 approaches Wmax then
the optimum allocation strategy shows a rapid switch from
somatic growth to allocation to reproduction, and an abrupt
flattening-off in growth at maturation results. These curves
cannot be approximated by the VGO model, but this growth
pattern does not correspond to the many years of indeterminate
growth typically observed in long lived seasonally reproducing
fish.
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