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Abstract. Habitat conditions may determine locations of patchily distributed small-
mouth bass nests in lakes, since young smallmouth bass are fragile and are therefore
vulnerable to suboptimal physical characteristics in their typically variable nesting area,
the littoral zone. Knowing which habitat conditions are important to nest locations would
ultimately be useful in protecting optimal nesting areas from anthropogenic disturbances
in lakes. To evaluate factors related to the nest distributions of a smallmouth bass (Mi-
cropterus dolomieui) population, physical habitat conditions were measured at 36 1-km-
long and 31 100-m-long sites in Lake Opeongo (Ontario, Canada). Both tree regression
analysis (a recently devised and unique statistical tool) and standard multiple regression
were used to determine the relationships between nest density and four habitat variables.
Tree regression analysis does not require assumptions of linearity or homoscedasticity of
variances, and it automatically identifies interactions among variables. Furthermore tree
regression results were more accurate and more precise than standard multiple-regression
results. Mechanisms underlying the significant relationships between nest densities and
both littoral zone temperatures and shoreline reticulation in 1-km-long sites and the non-
significant results at the 100-m-long scale, are discussed. Cross-validation results quantify
the difficulty in extrapolating sample findings to whole populations in ecological research.

Keywords: crossvalidation of results; Lake Opeongo, Ontario, Canada; littoral zone; Micropterus
dolumieui; multipleregression analysis, precision; nesting habitat of fish; shorelinereticulation; small-
mouth bass; temperature sensitivity; tree regression analysis.

INTRODUCTION

Smallmouth bass are among numerous species that
reproduce in the nearshore environment of lakes, where
physical and biological conditions are typically very
heterogeneous. Goff (1985) and Shuter et al. (1980)
have documented the fragility of this species during
the first few weeks of life, when they are virtually
immobile. These two circumstances suggest that the
habitat requirements for smallmouth bass reproduction
are probably not satisfied throughout the littoral zone.
Therefore, identifying littoral conditionswhere nest ag-
gregations are common could provide insight into the
mechanisms influencing the production of young. Sur-
vival rates of smallmouth bass early in life are an im-
portant influence on year-class abundance in adulthood
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(MacLean et al. 1981). Consequently, predicting high-
density spawning locations would be prudent for their
protection from angling activities during the spawning/
rearing period (which are known to severely compro-
mise smallmouth bass reproductive success (Phillipp
et a. 1997)), and from anthropogenic development in
and around littoral areas (Christensen et al. 1996).
Smallmouth bass reproduction involves the creation
of a nest (a depression in the sediment excavated by
the male, containing offspring). High nest-site fidelity
of returning adults (Ridgway et al. 1991a), suspected
phylopatry (Gross et a. 1994), and stationary locations
of nest aggregations from year to year (Rejwan et al.
1997) all suggest that habitat conditions influence the
nest distributions of lake-dwelling smallmouth bass.
Despite this evidence, no specific relationshi ps between
nest patch locations and habitat variables have been
quantified (Rejwan et al. 1997). Of the numerous com-
binations of habitat conditions that may influence nest
density, water temperature during the nest-guarding pe-
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riod, shoreline complexity, littoral-zone rugosity, and
prevailing wind/wave exposure of study sites were
measured in this study as a consequence of their im-
portance to other aspects of smallmouth bass repro-
duction. Temperature, prevailing wind/wave exposure,
and shoreline reticulation all affect the early survival
(Shuter et al. 1980, MacLean et al. 1981, Goff 1985)
and growth (Shuter et al. 1980, Ridgway et al. 1991b)
of the young. Temperature is also an important influ-
ence on the year-class abundance of northern small-
mouth bass populations (Shuter et al. 1980, MacL ean
et al. 1981, Serns 1982). Littoral benthic rugosity was
measured since nest locations of riverine smallmouth
bass populations are located in rugged river-bottom ter-
rain (Sabo and Orth 1994).

Standard multiple-regression procedures have been
commonly used to study relations between an organism
and various aspects of its environment. However, non-
linear relationships (Philippi 1993) and heteroscedas-
ticity (Dutilleul and Legendre 1993), which are typical
of ecological data, limit the effectiveness of standard
multiple regression. Furthermore, interactions among
environmental variables that are also typical of eco-
logical data (Philippi 1993) are difficult to detect using
this method of analysis. Tree regression analysis is a
relatively new (Breiman et al. 1984) and useful alter-
native statistical approach (Efron and Tibshirani 1991)
since it does not require the existence of linear rela-
tionships among the variables or homoscedasticity in
variances, and because interactions among habitat vari-
ables in relation to the organism are detected auto-
matically inthe analysis. Treeregression results present
the relations among physical habitat conditions and
nest density in an easily interpretable way by express-
ing nest-site selection as a hierarchy of decision and/
or selection processes, based on physical habitat cri-
teria. Since both tree and standard multiple regression
are statistical analyses that quantify the significance
and the relative importance of independent (habitat)
variables on a dependent variable (nest density), the
usefulness of tree regression analysis was compared
with the better known standard regression analysis.

FIELD SAMPLING METHODS AND PRELIMINARY
ANALYSES

Detection of smallmouth bass nests

Sampling was conducted in Lake Opeongo, Ontario
(5780 ha., 45°42" N, 78°22' W), where smalImouth bass
nest depths range between 0.4 and 2.5 m (most fre-
quently from 0.5 to 1.5 m). By snorkelling along the
1-m depth contour, exact nest |ocations were recorded
throughout the 155-km perimeter of Lake Opeongo in
four years (1984, 1992, 1993, 1994), and throughout
Jones Bay (a 6.3-km particularly high-density nesting
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area in Lake Opeongo) in eleven years (1977-1979,
1984, 1988-1994). These surveys of the smallmouth
bass nesting population are among the most compre-
hensive records known for the breeding locations of a
fish population (Rejwan et al. 1997).

Patchiness in nest distributions has been identified
throughout a large range of spatial scales in Lake
Opeongo (100-m to 10-km quadrat sizes) (Rejwan et
al. 1997). Thirty-six 1-km-long littoral sitesthroughout
Lake Opeongo and thirty-one 100-m-long littoral sites
throughout Jones Bay, Lake Opeongo, were selected
for measuring habitat conditions in such a way that
they encompassed the entire ranges in nest densitiesin
approximately uniform proportions.

Measurement of physical habitat variables

The wind/wave exposure of each study site was mea-
sured as the maximum fetch length along the prevailing
wind directions at three equally spaced locations along
the length of each 100-m and 1-km study site. Analysis
(ANOVA: F = 3503, F = 214, df = 7, 72, P <
0.0001, Tukey’s multiple comparisons) of 10 years of
continuously recording anemometer readings at the
south tip of Lake Opeongo indicated that northwesterly
and southwesterly wind velocities (in kilometers per
hour) were significantly greater than winds from other
directions over the duration of the average nest-guard-
ing period (29 May to 30 June, Rejwan 1996). The
maximum southwesterly and northwesterly fetch
lengths were measured at each of three locations at
25%, 50%, and 75% of the distance along each 1-km
and 100-m study site and were averaged to characterize
exposure at each site. Southwest fetch lengths were
multiplied by 1.37 since northwesterly winds were an
average of 1.37 times slower than southwest winds (P
< 0.05).

Water temperatures were recorded in a single central
location within each 1-km and 100-m site at 1 m (ap-
proximate nest depth) using one of three types of tem-
perature-recording instruments: continuous digital re-
corders (Ryan Temp-Mentors and DataSonde Hydro-
labs), continuous paper recorders (Ryan Thermistors),
and Geneq max-min thermometers. Midpoint temper-
atures were recorded from the minimum and maximum
temperatures from each 2-d time interval at each site
over the duration of the nesting period (25 May to 30
June 1993 and 1 June to 27 June 1994), regardless of
the type of temperature recorder deployed (Rejwan
1996). Highly significant correlations between 1994
and 1993 temperatures at both the 1-km (r2 = 0.59, P
< 0.0005, n = 27 sites) and the 100-m (r2 = 0.31, P
< 0.0025, n = 30) spatial scales indicated that there
was consistency between the years in the among-site
temperature differences. Consequently, 1994 temper-
atures were used to represent the site-specific temper-
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atures, since the temperature records for the 1993 nest-
ing season were unavailable for 10 of 67 sample sites.
Reticulation of the shoreline along each 1-km and
100-m study site was calculated using a measurement
protocol that facilitates inter-scale comparisons. This
method takes into account the fractal properties of
shorelines, whereby reticulated shoreline lengths in-
crease rapidly with increasing measurement resolution
relative to lengths of straighter shorelines (Kent and
Wong 1982, Sander 1987). At the small and large spa-
tial scales in this study, the shoreline reticulation of
each site was measured using one high-resolution (with
a Run-Mate curvimeter) and one low-resolution (with
a ruler) measurement. On a 1:1793 scale map (100-m
sites) and a 1:10000 scale map (1-km sites) the real-
image high resolutions were 1.8 m and 10 m, respec-
tively, and low resolutions were 20 m and 100 m, re-
spectively. Measurements of shoreline length with the
low-resolution method were subtracted from the high-
resolution site lengths of either 100 m or 1 km to gen-
erate a measure of shoreline complexity that increases
with increasing complexity (Rejwan 1996).
Thefourth variable, littoral-floor rugosity, was quan-
tified by measuring the straight-line end-to-end length
of an 18-m-long fine-link (1.0 cm) chain after lowering
it over the profile of the littoral floor along the 1-m
depth contour (approximate nest depth). The 18-m
chain length was equal to the average territory range
of a male smallmouth bass during the nest-guarding
period (Scott 1993). Rugosity was measured at (and
averaged over) ten and three equally spaced sampling
sites within each 1-km and 100-m-long site, respec-
tively. To produce a measure that was directly related
to the littoral ruggedness of the terrain, these lengths
were subtracted from the total chain length of 18 m.

METHODS OF STATISTICAL ANALYSIS
Sandard multiple-regression analysis

A best-combinations method of standard multiple-
regression analysis was employed whereby all com-
binations of physical variables were tested, and the
smallest combination of physical variables that yielded
the highest adjusted r? value was included in the stan-
dard multiple-regression equation. Triangular-shaped
relationships that could not be linearized between nest
density and both shoreline complexity and wave ex-
posure at the 1-km scale, were expected to limit the
effectiveness of the standard multiple-regression anal-
ysis.

The mechanisms involved in tree regression analysis

Tree regression analysis involves a recursive parti-
tioning of the study sites into two groups (of high and
a low nest density) that are as similar as possible in
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nest density within each. The exact allocation of sites
into the groups is determined by repeatedly dividing
the data set (of thirty-six 1-km-long sites, or thirty-one
100-m-long sites) into two groups at every possible
measurement within the entire range of measurements
of each of the four habitat variables. After each of the
binary splits, the variability (within-groups sum of
squares) in nest density is calculated for the two groups
of samples that are created, and these two values are
summed. Ultimately, the habitat variable and split-
point that results in the smallest amount of variancein
nest density within the two created groups, combined,
is used to divide the data set in the regression tree.
Exactly the same assessment is then repeated with each
of the two groups that were created, and each of the
independent variablesis assessed regardless of whether
or not they were previously used in the tree. The data
set is divided through this recursive binary-partitioning
mechanism until there is no more than a single sitein
a group, or until there is no variation in nest density
among siteswithin the group (Clark and Pregibon 1992,
StatSci 1993).

The regression tree that is created is structured in a
hierarchical fashion with the initial undivided data set
at the top (the root) followed by binary splits, each of
which are called ‘“nodes,”” to final undivided groups of
sites (‘‘leaves’) at the bottom of the tree. The propor-
tion of variance in nest density that is explained by
each split is indicated by the vertical length of the
“branches’” that extend from each node to each sub-
sequent node or leaf. The size of the regression treeis
measured by the number of leaves (final groups) in the
tree. Thus, the undivided data set is considered to have
atree size of 1.

Cross-validation analysis: determining tree size

Near the top of aregression tree, the early partitions
of study sites are relatively likely to reflect the rela-
tionships that actually exist between nest densities and
the habitat conditions. However, as tree branching con-
tinues, involving the partitioning of smaller and smaller
sample sizes, the precision of each split diminishes.
Consequently, branches near the bottom of the regres-
sion tree are less generalizable outside of the sample
to the rest of the population that has not been sampled.
To estimate what part of the regression tree quantifies
the relations between nest density and habitat condi-
tions that exist outside of the samples, across the entire
Lake Opeongo (1-km scale) and Jones Bay (100-m
scale) populations, a procedure known as ‘‘ cross-val-
idation” was employed (Clark and Pregibon 1992,
StatSci 1993).

Cross-validation analysis involved the random par-
titioning of the data set into 10 groups of equal or
similar size and the creation of a‘‘ cross-validation re-
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gression tree”” with only 9 of the 10 groups. This cross-
validation regression tree was used to predict nest den-
sity for each of the sites in the remaining 10th group
(the Cross-Validation Group). Predicted and observed
nest densities were compared by calculating variance
from the predicted mean value within each leaf at all
possible tree sizes, from the initial division of the data
into a two-leaved tree, onwards. This procedure was
repeated 10 times (10 cross-validation trees were cre-
ated), so that each of the 10 groups of sites was used
as the Cross-Validation Group once. The entire pro-
cedure was repeated 200 times, each time with a new
random assortment of sitesinto 10 groupsto ultimately
produce 2000 cross-validation assessments (Manly
1991).

The precision of the regression-tree predictions in-
creases with tree size as long as the total amount of
explained variation in nest density (total variance sub-
tracted by unexplained variance) among the cross-val-
idated sites increases with increasing tree size. How-
ever, astree size continues to increase, the total amount
of explained variance in nest density will eventually
decrease. This component of the regression treeis con-
sidered to be too imprecise to be generalizable beyond
the sample. Therefore, all tree sizes for which no fur-
ther increase in explained variance occurs are removed
(“pruned’’) from the tree (Clark and Pregibon 1992).

Cross-validation analysis: precision tests

Significance tests (which are used in tree and stan-
dard multiple-regression analyses, and are described in
the next section) do not indicate the extent to which
the samples (in this case, 1-km and 100-m sites sel ected
from Lake Opeongo and Jones Bay, respectively) are
representative of the whole population. Precision tests
are an important method of providing thisinformation.
The loss of model precision in extrapolating to the
whole population depends on the proportion of the pop-
ulation that was sampled (which is controllable), the
amount of variation in the population (which is un-
controllable), and the extent to which models over-fit
the data (the ratio of the sample size to the number of
explanatory variables used in the analysis, and the in-
tricacy of the model, both of which are controllable).
The assumption that tree and standard multiple-re-
gression models can be extrapolated to whole popu-
lations without much loss of accuracy was tested.

In this study, sample sites encompassed large pro-
portions (25% [n = 36 sites] and 50% [n = 31 sites])
of the total nesting populations at the 1-km and 100-m
spatial scales in Lake Opeongo and Jones Bay, re-
spectively. Precision was calculated using the same
cross-validation analyses that were used to determine
the appropriate size of the regression tree models, de-
scribed in the previous section. In estimating model
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precision, the important information from the cross-
validation results is the actual amount of the total vari-
ance in nest density that can be explained in the Cross-
Validation Group, rather than relative changes in the
explained variance across different tree sizes. This
cross-validation procedure was repeated (replicated ex-
actly) in a cross-validation analysis of the standard
multiple-regression results.

Tests of statistical significance

After the regression tree has been created and pruned
using the cross-validation procedure, it is necessary to
determine whether the pruned tree explains signifi-
cantly more variance than a random regression tree of
equal complexity. To determine this, the amount of
variance (expressed as the r2 value) explained by the
True Regression Tree (created using the complete data
set) was compared with r2 values of regression trees
(pruned to the same size as the True Tree) generated
from 2000 random associations (Manly 1991) between
nest density and the habitat variables. If the ‘true’ r?2
value was among the top 5% of the randomly generated
r2 values, the True Regression Tree represents signif-
icant (rather than chance) relations between nest den-
sity and the habitat variables used in the tree model.

Using this permutation method to determine the sig-
nificance of the True Regression Tree isin many cases
a more accurate way to test for significance than tra-
ditional significance tests used in standard multiple-
regression analysis. Thisisbecause the traditional stan-
dard multiple-regression test for significance considers
only the combination of physical variables that were
used in the final best-fit regression line (or at most, the
total number of independent variables used in the re-
search), rather than adjusting for the a posteriori eval-
uation of often hundreds of possible combinations of
independent variables that are initially considered in
the search for the best-fit regression line. Thus, the
calculated P value is many times smaller than it should
be, resulting in an overestimate of the significance of
the standard regression fit. Thisisavery important and
common problem in standard multiple-regression anal-
yses. In contrast, the P value that is calculated from
the repeated sampling technique in tree regression cor-
rectly takes into account the approximate number of
combinations of physical variables that are possible,
since all combinations of the four physical habitat vari-
ables are considered in creating both the True Regres-
sion Tree, and the 2000 randomly generated trees.

REsuLTs AND DiscussioN

Smallmouth bass nest distributions at the 1-km spa-
tial scale are not well described unilaterally by any of
the four physical variables that were measured (tem-
perature r2 = 0.17, wind/wave exposure r2 = 0.09,
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Fic. 1. Thisregression tree model (r2 = 0.58, P < 0.02, n = 36 sites), generated from the 1-km-scale data, and pruned
to a size of three terminal groups (leaves), distinguishes among high- and low-density nesting sites (solid black ovals). The
mean number of nests per kilometer is listed for each group of sites at each tree branch and leaf, and immediately below
are sample sizes in parentheses. The vertical line in each plot identifies the criterion used in the binary partitioning of sites
into different sections of the tree according to their temperature (°C) and degree of shoreline complexity (m). Shoreline
complexities below 100 m indicate <100-m difference in shoreline length between high (consistently 1 km) and low mea-

surement-resol ution methods.

shoreline reticulation r2 = 0.18, benthic rugosity r? =
0.00). Standard multiple-regression results explained a
significant amount of variance in nest density among
the sites (r? = 0.47, adjusted r2 = 0.41, P < 0.0004,
n = 36 sites; nest density = 0.03r — 93.37t + 2.89¢t?
+ (8.1 X 10-%)f + 751.36, wherer = shorereticulation,
t = temperature, f = fetch exposure) despite the tri-
angular (distinctly nonlinear) relations of fetch, and of
littoral benthic rugosity, to nest density. Shoreline com-
plexity, fetch, the temperature index, and a squared-
transformation of the temperature index (to remove ob-
served curvilinearity of residuals) were all significant
components in this regression equation. However, on
average, none of the variance in the cross-validated
sites (median r? -0.07, n 2000 permutations)
could be explained by standard regression equations
created with the other 90% of the data. Thus, the stan-
dard multiple regression model would probably not be
useful in explaining differences in nest density outside
of the sample in the rest of the population.

The pruned regression tree (r2 = 0.58, P < 0.02, n
= 36 sites, Fig. 1) indicates a strong positive relation-
ship between nest density and both temperature and
shoreline complexity. The tree was pruned to a size of
three leaves since subsequent sections of the tree model
did not improve the predictions of nest densities among
the cross-validated samples (Fig. 2). Cross-validation
analysis also indicated that the tree regression model
would likely maintain substantial precision in extrap-
olations outside the sample, to the population (median
r2 = 0.20, n = 2000 permutations, Fig. 2).

Theregression tree results suggest that decision mak-
ing by adult smallmouth bass is analogous to a hier-
archical assessment of physical habitat variables, from
primary considerations of temperature, to secondary
considerations of shoreline complexity (Fig. 1). The
large proportion of variance in nest density isexplained
by distinguishing the warmest 23% of the sites (above
17.05°C) from all other sites in the regression tree (r2
= 0.40, n = 8 sites). Thisis probably largely generated
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Fic. 2. The percentage of the total variation in nest density that is explained at each regression tree size (number of
terminal nodes) was calculated from 2000 cross-validation repetitions. This plot is used to determine how much of the
regression tree is imprecise and should be cut (pruned). Beyond a tree size of 3, no increase in explained variance in nest
density is observed. The white line within each box plot indicates the median explained deviance, and the boxes encompass
the interquartile distance (IQD). The bracketed vertical dotted lines encompass values that are within 1.5 1QD from the
median, and all samples beyond this are represented by horizontal lines.

by one or both of two known effects of temperature on
reproduction in smallmouth bass populations near the
northern limits of their range. First, early growth and
survival rates of broods are very closely tied to local
thermal conditions (Shuter et al. 1980), which are in
turn tied to the abundance of that cohort at adulthood
(MacLean et al. 1981). At water temperatures below
~15°C, survival rates of young in their nests decline
dramatically (Shuter et al. 1980). Since phylopatry
likely exists in the Lake Opeongo smallmouth bass
population (Gross et al. 1994), high densities of nests
would be less likely in areas where brood survival is
consistently low. Second, in relatively warm environ-
ments (where the young develop more rapidly), guard-
ing males can complete their nest-guarding duties soon-
er. Since adult food availability during the nest-guard-
ing period likely limits the lifetime reproductive suc-
cess of nest-guarding males (Ridgway and Shuter
1994), adults nesting in relatively warm environments
are perhaps least likely to abandon their broods early,
and/or are most likely to be able to return to nest in
subsequent years.

If nest-patch locations in Lake Opeongo are restrict-
ed by minimum-temperature tolerances of smallmouth
bass, as the above two mechanisms would suggest,
nests in relatively warm areas may supply alarger pro-
portion of their young to the cohort than do nests in
colder regions. Since temperature patterns in Lake

Opeongo at the 1-km scal e show significant consistency
between years (Rejwan et al. 1997), temperature sen-
sitivity may create the stable patterns in nest distri-
butions that have been documented. If this association
were common in lakes, then particularly warm regions
should be protected from anthropogenic activities.

Despite significant consistency in nest-patch loca-
tions, nest-site fidelity is not perfect (Ridgway et al.
1991a); sparse distributions of nests that occur outside
of nest patches (Rejwan et al. 1997) probably exist as
a consequence of imperfect nest-site fidelity and en-
vironmental conditions that are adequate (at least in
some years) for brood survival. It is also possible that
afew nesters persist in suboptimal, low-density nesting
environments as a consequence of some survival ad-
vantage over nesters from high-density areas at other
stages in their life history.

An interaction was identified by the regression tree
whereby nest densities are particularly high among the
eight warmest sites that have relatively reticulated
shorelines (but no such relationship existed among the
cooler sites). Thismay be the result of various possible
mechanisms. Shoreline complexity wasincluded inthis
study with the expectation that complex shorelines
would be preferred in typically high-exposure wind-
ward environments, where warm epilimnetic water ac-
cumulates. Consequently, complex shorelines were ex-
pected to provide protection from wind-driven waves,
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known to be detrimental to brood survival (Goff 1985),
while containing beneficial warm water temperatures.
However, this mechanism does not appear to explain
the positive relationship between shoreline complexity
and high nest densities in Lake Opeongo. The three 1-
km Jones Bay sites are among the four 1-km sites cat-
egorized in the regression tree by their particularly
warm water conditions, complex shorelines, and high
nest densities (Fig. 1), and Jones Bay isdownwind from
very large fetch lengths (up to 6 km) across the pre-
vailing wind directions. Even though significant nest
patchiness exists at a smaller (100-m) scale within
Jones Bay (Rejwan et al. 1997), the nest patches are
not confined to protected sections of the bay. Numerous
alternative mechanisms may be responsible for the re-
lation between complex shorelines and high nest den-
sity in warm areas, such as increased concealment of
nest aggregations from brood predators.

At the 100-m scale (in Jones Bay) no significant
rel ationship was detected between any of the four phys-
ical habitat variables and nest density from simple bi-
variate plots (r? range: 0.01-0.09, n = 31 sites for each
of four plots), standard multiple regression (r2 = 0.07,
P < 0.17, n = 31 sites), or tree regression (r2 = 0.63,
P < 0.36, n = 31 sites) analyses. These results may
be explained by one of two possibilities. First, statis-
tical power may have been too low to detect relation-
ships that indeed exist at the 100-m scale (relative to
the 1-km scale) where less extreme (although signifi-
cant) patchiness was observed (Rejwan et al. 1997).
Alternatively, having satisfied the large-scale require-
ments of favorable thermal and shoreline reticulation
conditions, small-scale nest patchiness in Jones Bay
may be determined by other environmental factorssuch
as temporally fine-scale differences in temperature
(e.g., differencesin short-term temperature fluctuations
due to seiche activity, or in temperatures at the onset
of the nesting period when among-site differences ap-
pear to be greatest).

The tree regression technique, based on the premise
that bimodal relations among the variables exist, is
better suited to the data in this study than the more
commonly used standard multiple-regression analysis,
which was extremely imprecise despite its statistical
significance. Cross-validation results from both the
standard and tree regression analyses demonstrate that
caution should be taken in extrapolating sample-gen-
erated findings to processes underway within whole
populations, even when very large proportions (23%
of all 155 1-km-long sites) of the population have been
sampled. Cross-validation analysis is an excellent
method of evaluating the precision of new predictions,
and should prove broadly useful for evaluating predic-
tive models, rather than relying on significance tests
alone.
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