THE BOTTOM FAUNA OF LAKE SIMCOE AND ITS ROLE IN THE ECOTOLOGY OF THE LAKE

BY

DONALD S. RAWSON

OF THE DEPARTMENT OF BIOLOGY
UNIVERSITY OF TORONTO

TORONTO
THE UNIVERSITY OF TORONTO PRESS
1930
CONTENTS

INTRODUCTION.. 5
HISTORY OF BOTTOM FAUNA INVESTIGATION........ 6
GEOLOGY AND PHYSIOGRAPHY OF LAKE SIMCOE... 8
APPARATUS AND METHODS.................................... 15
Dredging and Sorting 16
Shore Collecting .. 22
Special Apparatus for Investigating the Bottom Deposits 22
Quantitative Data and Calculations 25
Special Methods Used in Studying Substances or Organisms Related to the Bottom Fauna 26

PART I. THE SURVEY OF THE BOTTOM FAUNA 30
A. The Qualitative Examination of the Fauna 30
 Macrofauna—Annotated List of Organisms with Notes on Distribution, Numbers and Ecology
 Porifera, Coelenterata, Bryozoa 32
 Turbellaria, Nematoda, Oligochaeta 33
 Hirudinea .. 35
 Crustacea .. 36
 Insecta .. 40
 Arachnida .. 50
 Mollusca .. 61
 Microfauna of the Bottom Layers 68
 The Bottom Fauna as a Whole 75
 The Composition of the Bottom Fauna of Lake Simcoe as compared with that of other Lakes . 78
 Factors Limiting the Quality and Distribution of Bottom Fauna 80
 Lake Types ... 91

B. The Quantity of Bottom Fauna in Lake Simcoe 95
 Factors Affecting the Quantity of Bottom Fauna, and Comparison of Lake Simcoe with Other Lakes... 100
 The Rate of Growth and the Annual Crop 112
 Seasonal Variation in Amount of Bottom Fauna 114
 Annual Variation in Amount of Bottom Fauna 115
 Annual Production of Bottom Fauna 116
The Bottom Fauna of Lake Simcoe and Its Role in the Ecology of the Lake

Introduction

A complete study of the bottom fauna and its inter-relations is necessary to a fuller understanding of the ecology of a lake and to an appreciation of its fisheries problems. It was with this in mind that an investigation of Lake Simcoe was begun in 1926 and was carried on during 1926-28. The present paper embodies the results of this study, dealing with the quantitative and qualitative aspects of the bottom fauna with special reference to its ecological relations.

In the original plan the investigation was to include a general biological survey of the lake in which the writer's part was to be a study of the bottom fauna. As a result, the work was organized on a somewhat different basis than if it had been proposed as a study in itself. After the first season it was found that the general survey could not be continued and it was therefore necessary in the second and third summers to devote considerable time to the collection of sufficient physico-chemical, plankton and fisheries data with which to interpret the results of the bottom fauna studies.

Lake Simcoe is of particular interest because it is intermediate in size between Lake Nipigon and the smaller American lakes in which the bottom fauna has been investigated. As a result of its intermediate size the life conditions are also intermediate and the ecological relations exemplified in Lake Simcoe aid in an interpretation of these other lakes.

The investigation of Lake Nipigon was undertaken in 1921 by the Ontario Fisheries Research Laboratory. This lake was a type of large lake, in a young, rocky country with its fisheries in an almost virgin condition. Lake Simcoe, on
the other hand, is a lake of intermediate size in a sedimentary region and with its fisheries somewhat depleted. Fishing in Lake Simcoe has included game fishing and some commercial fishing, a situation which has resulted in considerable difficulty in the fish cultural policy, a difficulty which is added to by the unusual fishing methods employed in the lake.

A preliminary report published in this series (Rawson, 1928) deals with the results of the first season's work. It is largely superseded by the present account which is more complete in all respects.

The investigation has been made possible by the supervision of members of the Ontario Fisheries Research Laboratory and others of the staff of the Department of Biology in the University of Toronto. Special thanks are due to Professors B. A. Bensley and W. J. K. Harkness for their kind assistance. In the early part of the work the writer was fortunate in having financial assistance from and the co-operation of the Biological staff of the Ontario Department of Game and Fisheries. Further thanks are due to the National Research Council for financial aid, to the Provincial Board of Health for certain chemical analyses and to specialists who identified certain of the organisms collected in the lake.

History of Bottom Fauna Investigation

Fresh-water biology as a definite study had its inception not more than fifty years ago. Marine biology was by this time well advanced, as instanced by the historic Challenger expedition of 1872-76, and it is well known that in its early development the fresh-water study received considerable inspiration from this source.

Of the various branches of limnobiology, the plankton was first to achieve prominence, chiefly through the works of Zacharias and Apstein, published in 1896. Early interest in the bottom inhabitants of lakes was aroused by Zschokke, Van Hofsten and Ekman, who studied the fauna from the depths of sub-alpine and Scandinavian lakes. Their interests were chiefly taxonomic and distributional, leading them into
Richardson made a noteworthy contribution to his study of the bottom fauna of the Illinois River and connecting lakes and in the subsequent records of changes in this fauna due to increasing sewage pollution. A survey of the bottom fauna of Oneida Lake, in which the molluscs and their relation to fish were treated very thoroughly, was published by Baker in 1918.

In Canada the work has been limited to an investigation of Lake Nipigon carried on by Adamstone, 1922-24, in conjunction with the biological survey of the lake made by the Ontario Fisheries Research Laboratory. This work is of particular interest in being an account of a very large, deep lake quite unlike any other in which the bottom fauna has yet been thoroughly investigated. Lake Simcoe, while small in comparison with Nipigon, is relatively large as compared with the other American lakes mentioned above. Its intermediate nature makes it a valuable link in the correlation of conditions in large and small lakes.

Geology and Physiography of Lake Simcoe

Lake Simcoe, Lat. 44°N., Long. 79°W., is the fourth largest of the inland lakes of Ontario, having an area of 280 square miles. Situated 40 miles due north of Toronto it forms a link in that part of the Trent Valley system of waterways which empties into Georgian Bay by way of Lake Couchiching and the Severn River. From Lake Simcoe's elevation of 720 feet (above sea level) the water falls to 581 feet at Georgian Bay.

The depression in which Lake Simcoe is situated is part of the valley of the ancient Laurentian river (Coleman, 1922). In interglacial time this river drained the Lake Huron-Georgian Bay region, running south from the present Georgian Bay through the Holland River valley to Scarborough just east of Toronto. Glaciers blocked this valley by piling up an interlobate moraine which forms the present height of land midway between Toronto and Lake Simcoe. In post-glacial time this valley filled with water to form a bay of the great
Lake Algonquin which covered the area now occupied by Lakes Superior, Michigan and Huron and extended beyond their limits. Finally, deformation as described by Johnston (1916) lifted the land at the mouth of this bay, tipping the strata to leave a basin, Lake Simcoe, cut off from Lake Algonquin. Lake Simcoe, having originated in this manner, was probably of much greater area than at present and its flood waters cut their outlet to the northwest, forming the Severn river.

Geologically, the lake lies almost wholly in the Trenton formation with its extreme north end and Lake Couchiching extending through the Black river formation into the Precambrian area. The Trenton limestone is a thin, hard layer underlining the lake and completely covered by clays of glacial origin.

The present lake is somewhat rectangular in outline with two long finger-like bays, one on the west and one on the southwest. With the exception of these bays its shores are much exposed, a condition readily seen from the map and indicated by the shortness of its shore line in relation to its area.

The shore line, as measured from the Department of Railways and Canals chart, has a length of 123 miles, which is short for a lake 280 square miles in area. By calculation the shore development* is 2.27. If we add the shore line of the islands, for that, too, is essentially lake shore, we find a total of 144 miles. Detailed notes were made in the field as to the type of all this shore line and calculations based on these data indicate that of the 144 miles, 54 per cent. was stony, 33 per cent. sand and 13 per cent. supported vegetation. These shore types will be discussed more fully in a later chapter with reference to the quantity and quality of their fauna.

The large proportion of exposed shore line magnifies the importance of wave and ice action both on the physical nature of the shore and on the life which it supports. Storms sweep

*The ratio of the shore line to the perimeter of a circle of the same area as the lake.

the lake and, crossing its diameter of roughly 15 miles, develop a wave action of considerable intensity. Although the eastern and southern shores are subjected to the most intense wave action, the remainder is also much exposed. In the spring great ice sheets through the action of the wind disturb the shore materials and denude it of vegetation. Champlain point and Grape island in the north end of the lake are excellent examples of the results of such action: their high steep banks are composed of loose boulders pushed up by the ice.

The average depth of Lake Simcoe has been determined as 17 metres (56 feet) and the maximum depth 44 metres (145 feet). Using the depths obtained in making 200 dredgings and 80 additional soundings, map number 2 has been constructed to show the distribution of depth in the lake. Contour lines have been drawn at intervals of 5 metres in depth from the shore down to a depth of 35 metres. Of the total area, 280 square miles, the separate depth zones make up the following proportions:

- 0-5 metres: 14%
- 5-10 metres: 15%
- 10-15 metres: 15%
- 15-20 metres: 17%
- 20-25 metres: 15%
- 25-30 metres: 17%
- 30-35 metres: 5%
- 35-40 metres: 1%

From these figures it is seen that the depth zones from 0-30 metres are fairly similar in area and that a relatively small area of the lake (6 per cent.) has a depth of more than 30 metres. These data were the basis for the calculation of average depth as 17 metres.

The depth contours on map number 2 indicate that the deep water is in the central and western portions of the lake, Kempenfelt bay being particularly deep. In this portion of the lake the descent from shore into deep water is very rapid, in marked contrast with the gradual declination in the eastern part of the lake where large shallow areas are to be found. In the combined result the deep water of the western and central portions compensates for the predominance of shallow water in the remaining areas with the result that there is a uniform distribution of area with depth, i.e., each
of the six depth zones from 0-30 metres contains about 16 per cent. of the total area of the lake. As might be expected, the shallower part of the lake contains many shoals and reefs, some of them as much as one mile in their longest dimension. They are predominantly rocky and often come very close to the surface of the water.

Rivers and streams emptying into Lake Simcoe drain a watershed of some 1,100 square miles, excluding the area of the lake itself. This area is largely cultivated land with a small amount of woods and some marsh. Three large streams empty into the lake along its southern margin, the longest of which is the Holland river with a length of 23 miles to its most distant source. In the lower eight miles of its course it flows through the large Holland river marsh and empties into Cook's bay. The Blackwater river is about 18 miles long and empties into the lake just east of Jackson's point. The Pefferlaw river (also locally known as Black river) is farther east, emptying into the bay just east of Duclos point. Some thirty other streams empty into the lake. A few are of considerable size, e.g. the Beaver river at Beaverton, but most of them are small in flow and less than 5 miles in length. The outlet through the Narrows at Atherley is a stream some 50 feet in width with a flow in the neighbourhood of 600 cubic feet per second at the normal low-water level.

THE PHYSICAL AND CHEMICAL CONDITIONS IN THE WATER

To illustrate the condition of the water in Lake Simcoe, table 1 has been constructed, showing five series of temperatures and water analyses taken at significant seasons. These observations were all taken at station 1 (map number 1) in a depth of 21 metres of water. Other temperature series were taken at station II off Eight Mile point and in the deep water off Kempenfelt bay, but they add nothing to the information conveyed by the present series.

Observations on March 2, taken through an ice layer 18
inches in thickness, show a practically uniform temperature from surface to bottom and a plentiful supply of oxygen at all depths. It is evident that Lake Simcoe does not suffer from “winter stagnation.”

The series taken on May 19 shows nothing unusual, but on June 20 the water was slightly stratified and the bottom oxygen down to 4.3 p.p.m. The maximum stratification observed was on July 15, when the bottom oxygen was as low as 2.9 p.p.m. At this time an attempt was made to determine the oxygen content near the mud. The apparatus in use was not altogether suitable for this experiment, and the lowest oxygen determination was found to be 2.0 p.p.m., the sample being taken from about 0.75 metres above the mud. The decrease from 2.9 to 2.0 p.p.m. in the lower two metres is suggestive of a considerable micro-stratification or “microschichtung” as Alsterberg (1922) has termed it (page 84). In at least one of the three seasons the stratification and lowered bottom oxygen was destroyed prior to August 30, when a bottom water sample from 25 metres contained 6.3 p.p.m. of oxygen.

The moderately high transparency of the water in Lake Simcoe is attested by the fact that Secchi’s disc could be seen at a depth of 6 metres, the average of five determinations taken on the above-mentioned dates. The disc used was of white enameled wood 9 inches in diameter. The hydrogen ion concentration of 8.1 indicates an alkalinity due in part to the limestone and marly clays of the vicinity.

In general the water may be described as clear, cool, well oxygenated and slightly alkaline.

Apparatus and Methods

The experimental work consisted primarily of the collection and examination of the bottom fauna, including macroscopic and microscopic forms from various depths and types of bottom. To interpret the data resulting from this survey it was necessary to collect and examine the plankton, to make chemical analyses of the water and of the ooze,
plankton and bottom organisms and finally to study the food of the more important fishes.

The description of apparatus and methods is arranged in the following order:

I. Dredging and sorting
 (a) Limitations and sources of error in the technique.
 (b) Qualitative collection in deep water.
 (c) Records of dredging data.

II. Shore collecting.

III. Special apparatus for investigating the bottom deposits.

IV. Quantitative data and calculations.

V. Special methods of studying substances or organisms related to the bottom fauna.
 1. Fish food.
 2. Plankton.

DREDGING AND SORTING

In this work the aim was to keep the technique as like that used in former work of the laboratory as possible in order to facilitate the comparison of results. Accordingly the methods were essentially those used by Adamstone (1924) on Lake Nipigon with such changes as were considered to be improvements. The Ekman dredge (Birge, 1922), plate I, figs. 1 and 2, with release was used to collect the material from an area of 500 sq. cm. or 77.5 sq. in. A strong portable windlass with a 3/16-inch steel cable was used to haul the dredge. The bottom sample was transferred from the dredge to wooden trays 18 x 10 x 4 inches lined with white oilcloth or in some cases to galvanized buckets. Depth was observed from a counter on the frame of the windlass and distance from shore was estimated for short distances or calculated from the speed of the boat for longer distances. Field records were kept of all observations and included notes on the character of the bottom, plants brought up, etc.

The samples were washed successively through three screens attached to wooden frames as indicated in diagram 1. The uppermost screen was of coppered wire mosquito netting with about 180 meshes to the inch. The lower screens were of silk bolting cloth, 480 meshes and 1,400 meshes to the inch respectively. These silk screens were a considerable improvement on the older cheesecloth and factory cotton variety both in allowing the mud to pass through more readily and in the ease with which they were cleaned. When the lower screen became clogged with fine clay it was found useful to float out the organisms by repeated additions of water after which they were picked up direct or by restraining the supernatant liquid.

![Diagram 1](image-url)
LIMITATIONS AND SOURCES OF ERROR IN THE TECHNIQUE

The dredge is not always successful in bringing up the whole 77.5 square inches of bottom and the fauna from this area. Incomplete sampling occurs in several kinds of bottom. Sand is frequently packed so hard that the jaws of the dredge only scrape the surface without penetrating deeply enough to collect all the fauna. Hard clay is even more difficult to sample, although it occurs only in restricted areas and is therefore relatively unimportant. Gravel or stone also prevent the closing of the dredge.

Hard bottom samplers have been devised (Knudsen, 1927) but the lightest model weighs more than 200 pounds and is therefore impossible to handle with the usual freshwater equipment. The heavy sampler described below under the investigation of bottom ooze was too small to be used in quantitative examination of the macrofauna. For stone bottom no satisfactory quantitative sampler has been devised. For qualitative work, J. L. Hart of the Ontario Fisheries Research Laboratory, has arranged a suction pump which is very effective. The apparatus consists of a simple force pump with large valves, to allow the passage of small stones, etc., a 20-foot length of 1 \(\frac{3}{4} \) -inch rubber hose and a 25-foot pole. The operator in the boat uses the pole to direct the lower end of the tube while an assistant manipulates the pump. A coarse screen on the intake prevents it from clogging and a fine screen hanging over the side of the boat strains the water from the pump and catches the bottom organisms.

Organisms are sometimes lost when the dredge has been brought to the surface, being carried out with the water that drains from its corners. When sampling bottom, which is covered with vegetation or coarse debris, the jaws are frequently prevented from closing completely. Small Crustacea such as the Entomostraca or Amphipoda may be lost in this manner. After the first fifty dredgings had been taken, this loss was prevented by placing a short-handled dip net under the dredge as it reached the surface. The net was 18 inches in diameter and made of silk bolting cloth with about 480 meshes per square inch.

In screening the sample, care will prevent the loss of material over the edge of the screen. Although the lower screen stops the passage of all macroscopic organisms it is difficult to pick minute organisms from a mass of debris. Small transparent nematodes would escape observation were it not for their great activity which attracts the attention of the searcher. Minute red chironomid larvae are picked out quite readily from a dull background. Some organisms have no such distinguishing characteristics, for example, it is almost impossible to separate minute Sphaeriidae from a residue of coarse yellowish sand.

Each of these limitations in the technique may result in some loss from the organisms which inhabit the unit area which we wish to sample. This effect, although unimportant from a qualitative point of view, causes a varying amount of inaccuracy in the quantitative estimates. The amount of the loss, being dependent upon two variable factors, the quality of the fauna and the kind of bottom deposit, is in itself quite variable and not easily corrected.

A further possibility of error arises from the uneven distribution of the fauna itself. The unit area, 500 square centimetres, brought up by the dredge, is as large as can be conveniently handled with a light windlass in a small boat. In some cases it is not large enough to bring a fair sample of certain organisms. A test of this variation was made on August 3, 1929, during the investigation of a lake in northern Saskatchewan. In a part of the lake which was 9 metres deep the bottom was a rich organic ooze and thickly populated with *Chironomus plumosus*. Eight dredgings were taken in a circle 40 feet in diameter. The number of *C. plumosus* per dredging averaged 25, but varied from 15 to 41. The maximum deviation in this case amounted to 64 per cent. of the average population. Such a result indicates the necessity of taking large numbers of samples to reduce the error resulting from uneven distribution.

Seasonal variation in the bottom fauna (page 114) con-
stittutes another difficulty which, though independent of the
method of sampling, makes it necessary to distribute the
dredging over all types of bottom and throughout as many
seasons as possible in order to get a fair sample of the bottom
population.

Qualitative Collections in Deep Water

The suction pump has already been mentioned (page 18)
as a method of making qualitative collections from the
bottom. A second apparatus which was operable at greater
depths was a dragnet with runners (plate II, figs. 4 and 5)
resembling that described by Reighard (1919). The net had
a triangular opening 8 inches to the side, and three runners
of brass. When the net was in use additional weight was
added in the form of two 12-inch pieces of 1/2-inch lead pipe,
one of which was slipped over each of the two runners which
were to come in contact with the bottom. The outer net of
heavy cotton served to protect an inner net of silk bolting
cloth, 180 meshes to the inch, equipped with a simple
bucket that facilitated the removal of the haul. The net was
particularly useful in collecting amphipods, insect larvae and
the larger plankton Crustacea which live near the bottom.

Records of Dredging Data

The data obtained in dredging were recorded in tables,
an example of which is given below. Each table contained
the results of one series which was a convenient group, ten
or less, of dredgings in a chosen habitat or area. In most cases
a series was begun near the shore line and continued into the
deep water, dredgings being taken at intervals small enough
to indicate the changes in fauna as the series progressed.
Over long distances it was often found convenient to begin a
second series where the first finished in order to complete the
study of a given area.

The distance from shore was recorded in yards or miles
and depth was expressed in metres. While the use of two
systems of measurement is somewhat confusing, circum-
stances made this practice unavoidable. Distances on the
water could be measured more accurately in the familiar
units of yards and miles and these units are used in all the
available maps and charts. For depth it was thought advis-
able to use metres in order to make our results comparable
with those of a large number of other investigators who had
used this unit. Certain signs were used to indicate the char-
acter of the bottom, as follow:
m—Mud: soft oozy material with varying quantities of
organic detritus in its surface layers and usually on a
substrate of soft grey clay.
s—Sand.
c—Clay: hard clay (not applied to the softer type of clay
found in deep water).
g—Grit: coarse sand.
gr—Gravel: pebbles and stones not more than 3 inches in
diameter.
r—Rock: stones or boulders.
ma—Marl: limy bottom consisting mostly of more or less
finely broken mollusc shells with a mixture of clay.

These signs were combined to represent other types of
bottom, e.g. s/c indicates sand on clay.

<table>
<thead>
<tr>
<th>Table 2.—An example of the dredging records.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredging No.</td>
</tr>
<tr>
<td>Depth in metres</td>
</tr>
<tr>
<td>Distance from shore</td>
</tr>
<tr>
<td>Character of bottom</td>
</tr>
<tr>
<td>Gastropoda</td>
</tr>
<tr>
<td>Sphaeriidae</td>
</tr>
<tr>
<td>Chironomidae</td>
</tr>
<tr>
<td>Ephemeridae</td>
</tr>
<tr>
<td>Trichoptera</td>
</tr>
<tr>
<td>Amphipoda</td>
</tr>
<tr>
<td>Oligochaeta</td>
</tr>
</tbody>
</table>
Table 2. An example of the dredging records.
Series XXVII. June 16, 1928.
Begun 100 yards south of Brechin point and continued
southwest for a distance of 7 miles.
Dredging 1. Clean hard sand with ripple marks.
2. Gravelly sand with some Chara.
4. Unusual bottom type—gravel scarce at this
depth.

SHORE COLLECTING

In the shore zone (0-1 metres) special methods of collection
were used. In locations where the bottom was soft and
the fauna not too scanty the dredge was used as in the open
water. If the bottom were stony, weedy or otherwise difficult
to sample, a unit area was marked off by a square frame
18 inches to the side. This unit was large enough to give a
convenient sample and its area was four times that of the
Ekman dredge. The sample from such an area was dipped
up with a heavy scoop and screened through the usual sieves.
Stones were thoroughly washed and the water poured through
the screen to catch any clinging organisms. For qualitative
collections a heavy metal dipper, capacity of 1 quart, with its
bottom replaced by one of copper netting, was found very
useful. A dip net and a small seine were used for the same
purpose.

SPECIAL APPARATUS FOR INVESTIGATING THE
BOTTOM DEPOSITS

In studying the composition, layering and microfauna
of the bottom deposits in deep water, the dredge is not altogether satisfactory. It is
inconvenient to lift the lids and examine the contents of the dredge from the top, and
the layering is greatly disturbed when the contents are turned out. Moreover, the water which
drains from the top of the sample disturbs and carries off part of the surface detritus.

In order to bring up a portion of the bottom intact, with the surface ooze and the water still in place above it, a heavy
sampler was devised as follows:

THE HEAVY BOTTOM SAMPLER

The action of this sampler depends on its weight which causes a 4-inch brass pipe to sink into the bottom to a depth
of several inches. This pipe is lined with a removable cardboard sheath paraffined to make it waterproof. When the
tube has penetrated the bottom a brass messenger let down the cable, releases a rubber plug which closes the top end of the
tube. When the apparatus has been hauled to the surface, a cork is inserted in the lower end of the sheath and the latter
removed with its sample. A second cork is placed in the top of the sheath and the whole taken to the laboratory.

Details of the construction of this sampler may be seen in plate I, figs. 3, 4 and 5.

\begin{itemize}
 \item \textbf{A} is the brass tube 4 inches inside diameter, 1/2 inch in thickness and 11 inches long. It is slightly
 sharpened at the lower edge to aid in penetrating the bottom and has a flange on the upper inside surface to prevent the cardboard sheath slipping upward.
 \item \textbf{B} is the broad flange which prevents the sampler from sinking too deeply into the bottom. A much
 heavier flange was provided for hard bottom but was seldom found necessary.
 \item \textbf{C} is the release which when struck by the messenger releases the plunger.
 \item \textbf{D} is the rubber plug on the lower end of the plunger. This plug fits exactly into the bevelled upper end of
 the tube \textbf{A}. The plunger is forced down by
 \item \textbf{E} the spring which is compressed when the apparatus is “set.”
\end{itemize}

Fig. 5 is the paraffined cardboard cylinder used within the tube \textbf{A}.

The sampler measures 30 inches in height and weighs 35 pounds.
When the sample had been taken to the laboratory the water was siphoned from the upper part and strained through a net of plankton silk. The upper layer of detritus was taken off with a pipette for microscopic examination. The cardboard cylinder was then cut down with a sharp knife to allow a microscopic and chemical examination of the mud layers which were practically unmixed by the sampling process.

This sampler was used chiefly in the deep water. In shallow water the type of bottom was ascertained before the sampler was lowered to avoid damaging the lower end of the tube on stones. As might be expected, loose sand would fall out of the tube before it reached the surface. In fine, well-packed sand the sample was usually retained until the operator was able to reach down and insert the lower cork.

For the qualitative examination of the microfauna inhabiting the upper ooze layer a more convenient sampler was devised which was called the ooze sucker. This instrument was an adaptation of the idea used by Richardson (1921) in his apparatus for collecting bottom ooze in the Illinois river. Richardson’s original apparatus was limited to depths of not more than 15 feet since it was operated with a wooden handle.

The essential parts of this sucker were a rubber bulb of 50 c.c. volume, which was attached to an obtuse funnel of sheet copper. A frame, which served to keep the funnel upright when it touched the bottom, bore two arms which could be made to compress the bulb but might be released by sending a messenger down the cable. The mouth of the funnel (3 1/2 inches diameter) was covered with a coarse metal screen, 150 meshes to the inch, which prevented the obstruction of the tube by coarse debris. Six small holes (1/16 inch in diameter) were bored through the funnel 1/2 inch from its circumference. When the edge of the funnel was resting on the bottom mud these openings allowed the water to enter, wash across the surface of the mud and be drawn up into the bulb. When hauled to the surface the bulb was removed and its contents forced into a 2-ounce bottle for microscopic study in the laboratory. In plate II the ooze sucker is shown before (fig. 1) and after (fig. 2) its release.

This instrument was easily and successfully used in a variety of depths and on most kinds of bottom.

The deeper bottom deposits were sampled by lowering an 8-foot length of 1 ½-inch galvanized pipe through a hole in the ice. The weight of this pipe was 14 pounds and it could be made to penetrate as deeply as 6 feet into the mud of the deep water deposits. A small quantity of the mud brought up in the lower open end of the tube was removed for examination. The depth to which the tube had penetrated was meared by letting a sounding iron down to the surface of the ooze and pulling both ropes up together. The distance between the sounding iron and the lower end of the tube was then equal to the depth of penetration.

QUANTITATIVE DATA AND CALCULATIONS

In the numerical study of the bottom population per unit area the dredging results were directly applicable and accurate within limits as suggested on page 18. In determining the quantity of organisms per unit area, dry weight was used as a unit rather than live weight. The live-weight method is less convenient from several points of view. It increases the complexity of the field work and a uniform standard of “dreness” in living specimens is very difficult to maintain. It is probable that dry weight is more indicative of the food value of bottom organisms than is the live weight, since the water content is not nutritive matter. The total organic nitrogen is a better index of nutritive value than either live or dry weight, but less easy of application.

The average dry weight of individual bottom organisms was determined by drying large numbers of each species to a constant weight. For this purpose the specimens were placed in crucibles in an electric oven and submitted to a temperature of 50°C over a period of 24 hours. In some cases, i.e. chironomid larvae and ephemerid nymphs, the specimens varied so greatly in size that it was found advisable to divide them into groups of large, medium and small, the average weight of each group being determined separately.
The advantages of this method are that it leaves the most of the specimens for further qualitative or systematic work, and that it consumes much less time than the actual drying and weighing of the organisms from each individual dredging.

As a check on the accuracy of this procedure the organisms from 15 dredgings were classified and the weight calculated. The organisms were then dried and weighed and the actual weights compared with the calculated figures. In no case was the discrepancy greater than 25 per cent. with the average deviation being 9.5 per cent. It is therefore probable that the error is of no greater magnitude than that introduced by the uneven distribution of organisms as discussed on page 19. In cases where particular importance was attached to the amount of organisms taken in a dredging the actual dry weight was determined by the method described above.

Mollusc shells have always been a stumbling block in recording the amount of bottom fauna. Certain workers have included the total mollusc weight in the final figure, which we think is not advisable since mollusc shells are not a nutritive part of the bottom fauna. If this is done the resultant estimate is distorted, especially in cases where molluscs form a large part of the fauna. Others have stated production, both including and excluding the molluscs, which is better but not perfect, since neither figure is comparable to that from another location with a different proportion of molluscs in the fauna. We have adopted what we believe to be the best method in determining the shell content of different types of molluscs and deducting the shell weight from the total dry weight. The resultant dry "body weight" should be fairly representative of the nutritive value of the mollusc in question.

SPECIAL METHODS OF STUDYING SUBSTANCES OR ORGANISMS RELATED TO THE BOTTOM FAUNA

Fish Food

The food of fishes in the lake was determined by the examination of stomach contents, special attention being given to the food of bottom-feeding fish. The fish were taken at different seasons and by a variety of methods, the most important being the use of gill nets of meshes ranging from 1 1/2 to 5 inches. Other specimens for stomach analysis were taken in seines and by angling and spearing. The contents of stomach and intestine were preserved in a solution of formalin, and later submitted to macro- and microscopic examinations in the laboratory.

Plankton

In studying the general relations of bottom fauna to plankton the net plankton only was considered. Two nets were used, one with a large mouth to take samples of sufficient quantity for chemical analysis, the other a standard closing net. The former net was of no. 20 silk bolting cloth, with a circular mouth 18 inches in diameter. The shape was that of a simple cone with a height of 3 feet. The lower end of this net was provided with a bucket similar to that used in the "Wisconsin" net as described below.

The closing net used was of the type described by Juday (1916). The mouth, with an inner diameter of 12 cm., is at the top of a truncated cone of heavy cotton. The lower straining cone was of no. 20 silk bolting cloth and was equipped with a standard removable bucket at its lower end. The net was closed at any depth by allowing a messenger (a brass weight) to slide down the line and trip the closing device. In proportion to the area of this mouth, this net was much more efficient than the larger net, due, of course, to the upper truncated cone which reduces the overflow as the net is hauled up. The Juday closing net had, at the end of the first season, an efficiency of about 63 per cent., determined in the following manner. A column of water of known volume was strained through plankton silk identical with that of the net to be tested and the catch of organisms was counted. The net was then drawn through an exactly similar column of water and its catch compared with the former. The effi-
ciency of the net was shown by the fact that it collected 63 per cent. of the plankton which, as the former experiment had shown, might have been collected from this given column of water. The coefficient of efficiency was thus determined as 1.6.

The larger net, with mouth 18 inches in diameter, was calibrated by drawing it through the same column of water as the closing net of known efficiency, and subsequently comparing the catch. By this method the efficiency of the larger net was calculated as 37 per cent. of the Juday net, and its factor accordingly was 4.32.

The efficiency of a net varies with its age since the meshes tend to become clogged and lessen the straining capacity. The large net, 18 inches in diameter, was kept for a specific purpose, making total vertical hauls in the vicinity of certain dredgings, so that the total number of hauls did not exceed fifty. It is thought that these fifty hauls did not appreciably clog the meshes, so the efficiency factor 4.32, determined when the work was completed, does not differ greatly from the average efficiency during the use of the net. It is obvious that the efficiency of a net varies with the kind and abundance of plankton and with the age of the net even if the method of using such a net is uniform. In spite of these difficulties it is considered better to apply any possible correction to the data in order to make it comparable to that obtained in other locations and by other workers.

The greater number of plankton collections were total vertical hauls with the large net. These were supplemented by vertical series and surface tows taken by the closing net. The near-bottom plankton was also collected by means of the triangular runner net described on page 20.

Analyses of the plankton hauls were microscopic, volumetric, dry weight and chemical, according to the purpose for which the sample was taken. The volume of a plankton catch was measured by allowing it to settle in a graduated glass cylinder (inside diameter of 1 cm.) over a period of 24 hours. Dry weight determinations were made with the technique described on page 25 for bottom organisms. The only chemical analysis of the plankton was a determination of the total organic nitrogen content of the plankton. Difficulties encountered in the use of the usual microchemical technique for determination of total organic nitrogen resulted in the adoption of the following method, which is a modification of the macro Kjeldahl procedure. The latter was not applicable in its usual form due to the small quantity of nitrogen (0.5 to 3.0 mgm.) in the sample.

The plankton sample was placed in a 100 cc. Kjeldahl flask with a 1 cc. conc. sulphuric acid and the liquid evaporated to about 10 cc. Two cc. additional acid were then added along with 1 gm. potassium sulphate, a few drops of 5 per cent. solution of copper sulphate and a glass bead. Digestion was accomplished by heating over a micro burner until the solution turned green, the top of the flask being covered with a watch glass when dense white fumes began to appear. When the solution had cooled, 7 cc. water were added for every one cc. of acid used. The method so far is similar to that used in any microchemical nitrogen analysis such as that of urine. Nesslerization was, however, impossible because of the large proportion of acid added in the digestion process. A distillation process was therefore used with an apparatus similar to that used by Bock and Benedict with the substitution of the 100 cc. Kjeldahl flask for the pyrex tube used by these workers. After adding pumice to prevent bumping, the apparatus was connected and 50 cc. of a 50 per cent. solution of sodium hydroxide added for each cc. of acid used in digestion. The ammonia was distilled off into N/70 hydrochloric acid. The condenser was disconnected and washed down with a small amount of distilled water. To insure the complete liberation of ammonia another 3 cc. of sodium hydroxide was added, the condenser coupled and the mixture boiled for two minutes more. The titration was then made with N/70 sodium hydroxide, a mixture of methyl red and methylene blue serving as indicator. In the final titration, 1 cc. of N/70 NaOH solution is the equivalent of 0.2 mgm. of nitrogen.
Samples of the bottom deposits, especially the soft ooze of the deeper waters, were examined both physically and chemically. The former examination entailed a microscopic study of the constituents of various layers in the bottom deposits. The chemical analyses of the deposits were designed to show the comparative amounts of organic material in different areas and the vertical distribution of this material through the bottom layers. Analyses included the determination of free ammonia, albuminoid ammonia, nitrates, nitrites, and total organic nitrogen. They were carried out under the supervision of A. V. De Laporte and with the technique described by him (1920). Samples of the sediments from the deep water have been examined by E. M. Kindle, who is interested in the mineral and microscopic nature of bottom deposits from the point of view of stratigraphical geology.

WATER ANALYSES

The standard methods used in fisheries investigation were adhered to in the chemical and physical examination of the water. Temperature was determined with a deep-sea reversing thermometer (Negretti and Zambra). The transparency of the water was tested with Secchi's disc, a wooden disc 9 inches in diameter and covered with white enamel. Determinations of the dissolved oxygen were made by Miller's method (De Laporte, 1920) and the hydrogen ion concentration by means of the La Motte colorimetric equipment.

Part I

THE SURVEY OF THE BOTTOM FAUNA

A. THE QUALITATIVE EXAMINATION OF THE FAUNA

The bottom organisms which are the subject of the study include all the macroscopic bottom living forms from the shore line to the deepest part of the lake. The shore fauna is so rich and varied that it cannot be dealt with thoroughly in a general survey. For this reason the work on the shore area was confined to a quantitative analysis of the fauna with a determination of its typical and abundant forms. In the open water a more intensive qualitative examination was possible, and the resulting information more useful since the open-water fauna is more intimately associated with the fisheries problems of the lake than is the shore fauna.

Preliminary observations have been made on the microfauna which inhabits the bottom ooze of deep water. Since this is a new field, much of the time was occupied with the development of adequate sampling methods. A description of the apparatus used is given on page 23.

In referring to the occurrence and distribution of living organisms we make constant use of the term “depth zone.” In this study we have made an arbitrary division of the bottom into 5 metre ranges, breaking the lake’s depth of 45 metres into 9 zones. In addition to this we recognize in Lake Simcoe three larger divisions, marked out by differences of a biological, physical and chemical nature. Similar zones have been recognized by other limnological investigators who have frequently seen fit to make secondary divisions of these major zones. The exact limits of the zones as described by different workers seldom agree, due no doubt both to ecological differences in the bodies of water under investigation and to differences in interpretation. To prevent any misinterpretation of the terms as used in the present paper we include a definition of the three major zones and their distinguishing features.

The Littoral Zone. 0-5 metres. This zone is marked by variable conditions of temperature, the greatest water movement, abundant oxygen and the greatest light supply. The bottom may be of sand, stone or mud and frequently supports rooted aquatic plants.

Sublittoral Zone. 5-14 metres. The sublittoral zone is intermediate in position and character between the other two zones. The water is subject to moderate movement and variation in temperature. The light penetration is poor and...
the larger rooted aquatic plants absent. Sand and stone bottom are less frequent than in the littoral.

Profundal Zone. 14-45 metres. The profundal zone is an area of typical deep water conditions with relatively little water movement, a low uniform temperature, oxygen at times scarce, light penetration at a minimum and the bottom deposits usually soft and muddy.

The main groups represented in the macrofauna, or larger bottom population of the lake, are the Oligochaeta, Crustacea, Insecta and Mollusca. The remaining part of the fauna, which is much smaller in quantity and in general less important, includes representatives of such groups as the Porifera, Coelenterata, Bryozoa, Turbellaria, Nematoda, Hirudinea and Hydracarina. Some of the smaller groups have received little attention, since the primary object of the survey was not a systematic study but rather a consideration of the bottom fauna as a whole and its relation to life of the lake.

MACROFAUNA—Annotated List of Organisms with Notes on Distribution, Numbers and Ecology

PORIFERA

Spongilla sp. A small sponge of this genus was found encrusting stones near the outlet of the lake at Atherley. A similar if not identical form was found on the rocky shore of Snake island.

COELENTERATA

Hydra fusca L. Submerged plants were the most frequent habitat for this species. While most commonly attached to *Nymphaea* or the potamogetons, scattered individuals were taken in dredgings within 100 metres of shore and at depths of 3 metres or less.

BRYOZOA

Plumatella sp. This bryozoan was collected from submerged logs in the north end of Smith's bay. It forms a scattered covering on the rotting wood just below the water level.

Cristatella sp. Statoblasts of this form were taken from the bottom ooze in shallow water as well as in plankton and fish stomachs.

TURBELLARIA

Planaria sp. A species of *Planaria*, probably *P. maculata* Leidy, was collected in various parts of the lake. Most of the specimens were found at depths of from 1 to 6 metres among beds of *Chara* and on solid clay or marl bottom.

NEMATODA

The nematodes taken during the survey have been examined by Dr. G. Steiner of the U.S. Dept. of Agriculture. He finds three species.

Hydromermis acrostoma n. sp.
Hydromermis rawsoni n. sp.
Hydromermis sp. (not yet certain).

Dr. Steiner expects to publish descriptions of the species in the near future.

OLIGOCHAETA

The oligochaete fauna of the deep water all belonged to the family Tubificidae. In shallow water were found lumbriculid and a semi-aquatic species of *Helodrilus*, neither of which was abundant.

Limnodrillus. Members of this genus were most abundant in the 0-5 metre zone with a gradual decline in numbers down to 20 metres and scattered individuals as deep as 30 metres.

Tubifex. There were at least two species of *Tubifex* present. One, a slender form with long setae, was confined to the littoral zone. The other group, which was more abundant, was found first in 15 metres of water, increasing to a maximum between 30 and 35 metres and continuing in lar...
numbers to the deepest parts. The *Tubifex* group was found almost exclusively in mud bottom, while *Limnodrilus* was taken in a variety of habitats including sand, mud or *Chara* beds.

Lumbriculus sp. A large *Lumbriculus* was found in moderate numbers from shore down to depths of 3 metres. Most of the specimens were taken close to shore.

Helodrilus sp. A semi-aquatic member of this genus was collected at depths of 0.2 to 0.6 metres in sheltered bays, usually from a peaty bottom.

The distribution of Oligochaeta with reference to depth is shown in graph 1. The number of individuals decreases slowly from shore to a depth of 12 metres. Such a minimum in the sublittoral is a frequent occurrence in the distribution of bottom organisms and will be discussed in connection with the distribution of chironomid larvae (page 54). Proceeding from 15 metres into the profundal zone we find a rapid increase from 17 to 25 metres with a maximum abundance which is maintained into the deepest water. The number of oligochaetes in the profundal zone is almost four times that of the combined littoral and sublittoral zones. In this deeper area are found chiefly *Tubifex*, while *Limnodrilus* is largely confined to the upper 20 metres.

The distribution of Oligochaeta in Lake Simcoe is much more uniform than that in Lake Nipigon. In the latter lake the maximum number was found at a depth of 100 metres, while two minor maxima occurred at depths of 10 and 50 metres.

Although the oligochaetes make up a comparatively small part of the profundal fauna, they play an important role in the transformation and circulation of food materials. This function will be dealt with in Part II.

HIRUDINEA

The leeches collected during the course of the investigation have been identified by Professor J. P. Moore of the University of Pennsylvania. He reports 10 species which are listed in the following account:

Glossiphonia nepheloidea (Graf.). A single specimen of this species was brought up from hard sand at a depth of 5 metres.

Helobdella stagnalis (Linn.). This is one of the most abundant leeches in the lake and it exhibits a very general distribution. On mud bottom it is most frequent at depths of 0 to 2 metres, but is found as deep as 18 metres. It ranges alike over clay, sand or stone and on exposed points or in weedy protected bays.

Placobdella rugosa (Verr.). Small numbers of this species were collected from the rocky shores of Fox island.

Actinobdella triannulata Moore. This species was described by Moore from Lake Nipigon in 1924. In Lake Simcoe it was taken from sandy *Chara* bottom at a depth of 2 metres.

Piscicola punctata (Verr.). This fish leech was collected in numbers from whitefish and perch and from gill nets set in shallow water. A few specimens were taken on a gravel bar at the Sand islands.

Haemopis marmoratis (Say). This leech was collected in several parts of the lake from stony shores. A single specimen was found on the muddy shore of Smith's bay in the
Mysidacea

Mysis relicta Loven. The scarcity of *Mysis* in the lake is one of the outstanding features of the bottom fauna. Only five specimens were taken during the three years of the investigation. Four of these were from fish stomachs (ling and whitefish) and one was brought up by the dredge from a depth of 32 metres. Continued attempts were made to find more of this species, chiefly by towing in the deep water, but always without success. Coupled with the absence of any deep water Amphipoda (see below) the scarcity of *Mysis* constitutes a noticeable lack in the bottom fauna as fish food.

![Graph II. The distribution of Amphipoda according to depth.](image)

AMPHIPODA

Gammarus limnaeus Smith.

Hyalella knickerbockeri Bate.

The two species of Amphipoda taken were of very limited distribution. *G. limnaeus* was found only in the shore zone 0 to 1 metres and was not numerous. *H. knickerbockeri* was confined to the littoral and sublittoral zones with its maximum abundance in the former at a depth of 4 metres. The abundance of *H. knickerbockeri* in the shallow water, especially on beds of *Chara*, constitutes an important source of fish food.

DECAPODA

Cambarus virilis Hagen.

Cambarus propinquus Girard.

C. virilis was taken from all kinds of hard bottom and at depths ranging from shore down to 6 metres. Large specimens were frequently brought up with gill nets, set in 4 to 5 metres of water. *C. propinquus* was never taken at depths greater than 1 metre. A further contrast was noted in that immature specimens of *C. propinquus* were frequently found on gravel or stony shores while the specimens of *C. virilis* were, with one exception, adults. Both species were found in bass and perch stomachs, but *C. virilis* was more common than *C. propinquus*.

ISOPODA

Mancasellus tenax. This species was collected from depths of 1 to 16 metres and in various parts of the lake. In the littoral or sublittoral zones it was always found in growths of *Chara* or *Elodea* and on hard bottom. At 12 and 16 metres it was found among plant debris on top of soft clay.
Ephemerella are interesting as "sprawling" types of nymphs, which live on the bottom in open water, in contrast with Hexagenia and Ephemera which are true burrowing forms and are quite at home in the muddy depths. Leptophlebia nymphs were found on sand or marl, often among Chara. The remaining Baetidae, including Choroterpes, Baetis, Centropilum and Baetisca, were all found on exposed rocky shores, Baetisca inhabiting the most exposed places available.

The Heptagenidae are varied but are not particularly abundant in Lake Simcoe. Their depressed form adapts them to their habitat among stones or gravel on the wave-washed shores. With the exception of a few specimens of Ecdyonurus taken in a protected sandy bay, all the Heptagenidae were collected from such exposed rocky shores.

The distribution of mayfly nymphs as a whole is shown in graph II.

The maximum number found in the shore zone, 0 to 5 metre area, is due to the variety of the near-shore forms. A second maximum at 15 metres is due to the abundance of large Hexagenia nymphs in the lower sublittoral and upper profundal. The decrease in numbers in the sublittoral is a common feature in the distribution of many groups of bottom organisms. The sublittoral is a transition zone between the littoral and the profundal. Having little distinct fauna of its own it is populated by a mixture of littoral and profundal forms, neither of which find it quite favourable, and the result is a small population as compared with the neighbouring zones.

The distribution of ephemerid nymphs in Lake Simcoe is quite unlike that found in Lake Nipigon. In the latter they are confined to the upper 10 metres while in Lake Simcoe the large Ephemeridae are plentiful between 10 and 20 metres.

As food for bottom-feeding fish, Hexagenia and Ephemera are the only important genera. Caenis is too small to be of much value and all the remaining species inhabit the littoral zone, which limits their usefulness as food for fish.

Odonata

The dragonfly nymphs collected in Lake Simcoe were taken from the shore zone, 0 to 1 metres, with the exception of one specimen of Didymops transversa brought up from a depth of 3 metres near the mouth of the Black river. A small collection was submitted to Dr. E. M. Walker of the University of Toronto, who reports the following species:

- Lestes rectangularis Say.
- Enallagma boreale Selys
- Enallagma exsulans Hagen?
- Enallagma hageni Walsh
- Ischnura verticalis Say.
- Hagenius brevistylus Selys
- Dromogomphus spinosus Selys
- Boyeria grajiana Wmns.
- Basiaeschna janata Say.
- Anax junius Drury
- Didymops transversa Say.
- Tetragonuria cynosura Say.

(or T. spinigera Say.)
Protected bays with partly submerged vegetation are the preferred habitat for many of these nymphs. Such a bay is found between the Sand islands and Georgina island where a fine sandy bottom supports a moderate growth of Scirpus, Nymphaea and other rooted aquatics. A single collection from this habitat on May 29, 1927, contained numbers of Enallagma boreale, E. exsulans, Hagenius brevistylus and Tetragonemia cynosura. On July 21, 1927, a similar habitat in the Narrows at Atherley yielded numbers of Lestes rectangulare, Ischnura verticalis, Basinaeschna janata and Anax junius. This distribution, i.e. very limited but abundant in suitable habitats, was characteristic of the whole group.

A single specimen of Boyeria graphiana and four of Enallagma hageni were collected from rocky shores at Big Cedar point.

No living specimens of Dromogomphus were collected, but three specimens were taken from the stomachs of small-mouthed black bass and yellow perch.

HEMIPTERA
The aquatic Hemiptera are not to be considered as true bottom forms since they swim and feed freely through the water of protected areas. Three common forms were collected in the weedy protected bays, Lethocerus americanus, Notonecta and Corixa. Apart from the occasional appearance of Notonecta and Corixa in the food of perch, the Hemiptera are of little interest in the ecology of the open lake.

NEUROPTERA
Sialis sp. The larvae of a small sialid, probably S. infumata New., were scattered over a wide range of depth and a variety of bottom. It was found from depths of 1.5 metres down to 19 metres with a maximum at 10 metres. Juday and Muttkowski found it ranging from 5 to 20 metres in Lake Mendota. It was, however, much more abundant in Mendota as indicated by an average of 10 individuals per square metre and a frequent occurrence in perch stomachs. In Lake Simcoe the average number is 2.2 per square metre and on only one occasion was it found in fish stomachs.

LEPIDOPTERA
Nymphula sp. The larvae of this small moth were found in the channel between Snake island and the mainland. A number of specimens were dredged up from a depth of 4 metres where the bottom was of clay and supported a scattered growth of potamogetons.

TRICHOPTERA
The caddis larvae are an important component of the littoral fauna and certain species penetrate the sublittoral zone to depths of about 10 metres. A selection of larvae was submitted to C. K. Sibley, of Clayton, Missouri, who has reported the following forms:

Hydroporinae
Hydroptila sp. Two specimens were taken on stony shore.
Oxethira sp. A single specimen was collected from clay bottom in 4.5 metres of water.

Hydropsychidae
Hydropsyche sp. This form was common on stone or reeds, also on clay in depths of 1 to 2 metres.
Hydropsychodes analis Bks. Large numbers of this form were collected from stony shores.
Polycentropus sp. A single specimen was found in mud at 1.5 metres.

Sericostomidae
Helicopsyche borealis Hag. This form was very abundant on semi-exposed stony shore.
Phanopsyche sp. A few specimens of this genus were taken on sandy shores.

Molannidae
Molanna sp. Molanna is common on exposed sand or stones down to depths of 2 metres.

Leptoceridae
Leptocerus sp. This is one of the two caddis larvae that are found at considerable depths in Lake Simcoe. Frequent specimens were taken from
mud bottom at 6 to 17 metres, others from hard clay in 2 to 5 metres, and a few from stony shores.

Leptocerus uwarowii Kol. This species is less common than the last form. It is found at depths of 0 to 10 metres, usually on sand or gritty bottom, and was also frequent on the shore vegetation.

Oecetis sp. *Oecetis* is more abundant than *Leptocerus* sp., but not found deeper than 7 metres. It was taken from clay, marl or sand, but never from mud or rock bottom.

Setodes grandis Bks. Rare. This species was found on clay bottom 1 to 2 metres in depth.

Triano~es sp. Triano~es was collected from sandy bays with vegetation and occasionally on clay bottom down to 5 metres in depth.

Phryganeidae

Phryganea sp. A single specimen was found on clay bottom at a depth of 6 metres.

Phryganea interrupta Say. This form was not uncommon in sand or silt at the edge of *Scirpus* beds.

Limnophilidae

Limnophilus sp. This species was common on stones or wood debris.

Limnophilus rhodopicus L.? A few specimens of this species were taken on sand among plant debris.

Halesus guttifer Walker. This species was found only on exposed stony shore.

Stenophylax scabripennis Rambur. This common species was taken on stone or sand shores with wood debris.

While the caddis larvae of the lake are as a whole shore forms, two species, *Leptocerus* sp. and *Oecetis* sp., extend into the sublittoral in large numbers. These species, with others of the family Leptoceridae, are occasionally found in the stomachs of whitefish, perch and bass, though never in large numbers.

DIPTERA

The Diptera of the lake belong mainly to the two families, Corethridae and Chironomidae. Occasional specimens of Tabanidae, Psychomyiidae, etc., have been collected from the shore zone in various parts of the lake. Such forms are abundant only in small, quiet bays and are not typical lake forms. We therefore confine our discussion to the two first-mentioned families.

Corethridae

Corethra sp. The larvae of *Corethra* are not true bottom-living forms since they can and do swim freely away from the bottom under certain conditions. Conversely they are not truly limnetic forms since at certain times they rest upon the bottom. We therefore include them in our study of the bottom fauna.

![Graph IV. The distribution of Corethra larvae according to depth.](image)

The distribution of *Corethra* larvae according to depth is indicated in graph number IV. Beginning in small numbers at 7 metres they increase slowly down to 20 metres. A more rapid increase is observed from 20 to 30 metres with a maximum abundance retained from that depth (30 metres).
into the deepest water. Corethra is definitely a profundal organism in Lake Simcoe.

In Lake Mendota, Juday and Muttkowski found a similar distribution. Lundbeck, in his studies of north German lakes, mentions Corethra as the only profundal species which had its maximum in the lower profundal, i.e. depths greater than 20 metres. In Lake Simcoe Corethra collected at depths of 7 to 20 metres were all from soft muddy bottom. In view of the fact that in the deep water where Corethra occurs most plentifully, the bottom is all muddy, it would appear that this type of bottom is partly responsible for the distribution of Corethra.

The abundance of Corethra in Lake Simcoe is small as compared with Mendota or the above-mentioned north German lakes. The average summer abundance of Corethra larvae in the profundal zone of Lake Simcoe is about 40 per square metre, a small population as compared with 16,000 per square metre in Lake Mendota. During three seasons of the investigation on Lake Nipigon, Adamstone found no Corethra larvae although specimens have since been taken from a nearby lake. The data suggest that larger lakes such as Simcoe and Nipigon are less favourable for the production of Corethra than smaller ones, e.g. Mendota.

Seasonal variation in the numbers of Corethra larvae due to their life cycle is an important factor in the study of their abundance. The numbers of Corethra in the profundal zone in Lake Simcoe vary from 38 per square metre in May to a minimum of 9 per square metre in late July and an increase to 42 per square metre in October. In November the number had risen to 70 per square metre. This situation is to be attributed to the fact that Corethra has its maximum emergence in late July and early August. A similar condition was observed by Juday on Lake Mendota, where he followed the numbers of Corethra at a deep-water station, 23 metres, over a period of two years. A graph in his paper of 1922 shows the seasonal variation in numbers of larvae per square metre. An extended maximum exists from October to May and falls to a sharply defined minimum in August. This minimum he ascribes to the maximum emergence of Corethra which, as Muttkowski had recorded, took place between June 15 and August 20, with smaller numbers emerging as late as September 30.

Two features in the seasonal distribution of Corethra, larvae in Lake Simcoe have not been recorded from other lakes. In the 10-20 metre zone, where through the rest of the growing season the number of larvae average 2.3 per square metre, in July the numbers rise suddenly to 6.8 per square metre. If this result was due to encountering large swarms rather than to a general increase in numbers, the occurrence of such swarms in shallow water at this period is still unexplained. A second point was observed with reference to the abundance of larvae in May. The average abundance of 38 per square metre in the profundal zone was the result of 42 per square metre in the upper profundal and only 22 per square metre in the lower part of the zone, i.e. from 35-45 metres. This lowered occurrence in the last 10 metres was not found in the autumn distribution and is as yet quite unexplained. It is unlikely that the situation could have been the result of a scarcity of oxygen since the bottom oxygen at 40 metres ranged from 8.2 to 6.7 p.p.m. during May.

Corethra larvae are known to make nocturnal upward migrations. The statement made by Juday and others, that they lie on the bottom ooze during the daytime and swim away from it at night, was confirmed by horizontal tows taken at different depths in Lake Simcoe. The observations were made during June, 1928, off Thorah island. During the middle portion of the day no Corethra were taken more than 1 metre above the bottom. Tows taken at night showed their presence 6 to 8 metres from the bottom and on one occasion a swarm of larvae was encountered at the surface in a depth of 12 metres of water. Juday found that the immature larvae were always free swimming and that only mature forms lie on the bottom. The fact that in Lake Simcoe no young larvae were taken on the bottom may be regarded as partial confirmation of this observation.
Muttkowski describes the duration of the larval stage as six or seven weeks with a pupal life of one to three days. He suggests the possibility of three generations in one summer, winter larvae pupating in May, a second lot in July and the last generation in September. An exactly defined minimum abundance was found in late July in Lake Simcoe and in August in Lake Mendota. Since this minimum indicates the maximum emergence it is doubtful if the early and late generations are of any significant numbers.

Different investigators are not quite agreed on the food habits of Corethra larvae. An extensive study of the ecology of this form was made by Frankenberg (1915), who observed that they ejected undigested debris from their mouths after feeding. He suggests that Cyclops is the favourite food of Corethra and that the distribution of the larvae in deep water is determined by the abundance of Cyclops. Alsterberg (1924) and Lundbeck (1926) have both verified this relation in European lakes. Muttkowski (1918) states that they feed chiefly on the bottom ooze. He has observed them eating Volvox in shallow water.

In certain lakes Corethra larvae are important as fish food. Alsterberg (1926) mentions Corethra as a favourite food of fish and suggests that the distribution of fish in deeper water is sometimes due to the supply of this organism. In the deep water of Lake Mendota, Juday estimates the yearly crop of Corethra larvae at more than 100 kgm. dry weight per hectare, which is a large proportion of the total bottom fauna production. In these depths Muttkowski mentions that perch were frequently gorged with Corethra larvae and that bottom-feeding fish ate large numbers of them. In Lake Simcoe the number of Corethra larvae is much too small to make them an important source of food. They were found in stomachs of whitefish, sucker and perch, but only in negligible quantities.

Chironomid larvae are characteristic and important members of the bottom fauna in fresh water lakes. In Lake Simcoe they are the most abundant group of bottom organisms, forming 60 per cent. of the total population by number and 65 per cent. by weight. A collection of larvae was submitted to Professor O. A. Johannsen of Cornell University, who records the following genera and species:

- Chironomus plumosus L.
- Chironomus spp.
- Chironomus subg. Cryptochironomus
- Chironomus subg. Microtendipes
- Tanytarsus spp.
- Tanypus (Ablabesmyia) sp.
- Procladius (sens. lat.)
- Culicoides sp.

Chironomus plumosus L. C. plumosus is the outstanding species among the chironomid population. It is more numerous than any of the other groups of chironomid larvae and reaches the greatest size, being frequently over 25 mm. in length. In numbers it makes up one-quarter of all the chironomids in the lake and in weight some 35 per cent. of the total chironomid population.

The distribution of C. plumosus according to depth shows a scattered occurrence from 5 to 10 metres with an abundance from 10 to 45 and the maximum between 20 and 35 metres. It is definitely a profundal species, a conclusion which is confirmed by the fact that it occurs in 5-10 metres only in places where the bottom is soft and muddy, i.e. resembling that of the profundal. A very different distribution of C. plumosus was observed by Muttkowski in Lake Mendota. Here it was confined to the littoral area and in depths of more than 7 metres it was replaced by the other large species, C. tentans. Neither of these larger forms was present in Lake Nipigon where few chironomid larvae were more than 10 mm. in length.

No swarming of C. plumosus was observed on Lake Simcoe, the only adults being taken between September 6 and 14, 1926. Lundbeck, in the Plöner See, found the species emerging gradually during September and October. A very
different condition was observed by the author on Waskesiu lake in northern Saskatchewan. In this lake, *C. plumosus* swarmed on August 27, 1928. At the time several areas of 2 to 4 acres on the surface of the lake were completely covered with a heavy layer of pupae and newly emerged adults.

Chironomus plumosus appears to be well adapted to life in the deepest water with such aids to respiration as haemoglobin in the blood and the presence of both anal and ventral blood gills. These structural features are probably an aid to respiration, but they are by no means constant in all the chironomid larvae which frequent the deep water. Neither are these features limited to the deep-water species. Muttkowski emphasizes the absolute lack of any correlation between colour and oxygen supply. He found bright red species on shore and pale species in the deep water. Moreover, the coloration varies greatly within a single species. *C. plumosus* in Lake Simcoe was usually red, but sometimes yellow or greenish with no observable correlation between these colours and variation in depth or oxygen supply. In the final analysis it must be recognized that *C. plumosus* is a very resistant species, not only from its ability to live at great depths, but from its toleration of lowered oxygen supply and general pollution, as established by Richardson in his studies on the Illinois river (1921-26).

Chironomus spp. Members of the typical subgenus of *Chironomus*, other than *C. plumosus*, were not distinguishable in their larval form. Their total number is almost as great as that of *C. plumosus* alone. The distribution of the group is more or less uniform from shore to the deepest water and over sand and mud bottom. It is supposed that this situation is due to the grouping of a number of species with different habitats rather than to one or two very cosmopolitan species.

Chironomus subg. *Cryptochironomus*. The subgenus *Cryptochironomus* ranks fifth in numbers among the above-mentioned groups of chironomid larvae. They occur most frequently in the sublittoral zone, being present in practically every dredging between the depths of 5 and 15 metres. Some individuals were taken from the littoral zone chiefly in mud or Chara beds and scattered individuals were found in the profundal zone to depths of 36 metres.

Chironomus subg. *Microtendipes*. Very few specimens were taken of this group and these all on hard bottom, sand or clay, with Chara. All individuals were found between depths of 3 and 7 metres. Lundbeck mentions *Microtendipes* as living near shore in summer and migrating towards deeper water with the onset of winter.

Tanytarsus spp. *Tanytarsus* was most abundant in 3 to 5 metres with a moderate occurrence down to depths of 30 metres. It is slightly more abundant than *Cryptochironomus* but less regular in its occurrence.

Tanytarsus (Ablabesmya) sp. Small numbers of this form were taken at irregular intervals between depths of 1 and 10 metres. Practically all the specimens were from sand bottom.

Procladius (sens. lat.). The procladius group is abundant in Lake Simcoe, being surpassed only by the typical subgenus *Chironomus*. *Procladius* resembles the latter group in distribution, being cosmopolitan both as to depth and type of bottom. Almost uniform numbers are found from 2 to 45 metres. In the lower profundal it equals *C. plumosus* in numbers but is of much less consequence because of its smaller size.

Culicoides sp. *Culicoides* was the only genus of the Ceratopoginae taken during the survey. It was frequent in the littoral zone, 1 to 4 metres, while scattered individuals were found as deep as 8 metres. It is therefore the only littoral form among the chironomid larvae of Lake Simcoe. The habit of swimming freely in the water provides a marked contrast between this form and the other chironomid larvae which have the tube-building habit. Lundbeck considers it as one of the active migrants among the bottom fauna.

The total chironomid population of Lake Simcoe is made up of the above groups in the following proportions, *C. plumosus* 27 per cent., *Chironomus* spp. 27 per cent., *Procladius* 18 per cent., *Tanytarsus* 12 per cent., *Cryptochironomus* 10 per cent., *Tanypus*, *Microtendipes* and *Culicoides* together 6 per cent.
A noticeable feature of the chironomid fauna of Lake Simcoe is the variety of forms present in the deeper waters. In Mendota, Juday found only two species, C. tentans and Protenthes choreus, the latter present only in small numbers. In the deep water of many north German lakes Lundbeck found two forms, C. plumosus and C. libeli-bathyphilus and frequently just one of these was at all numerous. In the deep water of Lake Simcoe, C. plumosus is abundant, but not more so than Procladius, while at least one other species of Chironomus is frequent down to depths of 35 metres. Added to this, Cryptochironomus and Tanytarsus both penetrate the deep water in small numbers. Lake Simcoe is subject to a lesser stratification than the other lakes in question and in consequence it seldom suffers a great deficiency of bottom oxygen. It may be for this reason that these varied forms are allowed to penetrate the deep water of Lake Simcoe, while in other lakes the scarcity of oxygen prevents their so doing.

The distribution of the chironomid population as a whole is shown in graph number V. Curve A indicates the numerical distribution of larvae according to depth. From this graph it is immediately evident that the bulk of the chironomid fauna is in the profundal zone. At the minor maximum, 7.5 metres, the numerical abundance is only half that of the maximum at 37.5 metres. The minimum observed at 12 metres in the lower sublittoral zone is of frequent occurrence in the depth distribution of bottom organisms. The sublittoral zone is a transitional region between the littoral and the profundal. Since it has little distinct fauna of its own it is populated by strays from the neighbouring zones. Sublittoral conditions are not favourable for either of these groups with the result that the population in this region is less thriving and smaller in quantity than in either the littoral or the profundal.

From curve B, showing the distribution of chironomid larvae by weight, it is obvious that the maximum weight production does not coincide with the maximum number of larvae. The former was at 22.5 metres while the maximum number was at 32.5 metres. In other words the larvae at 22.5 metres were larger than those in the deeper water. This condition has already been met with in another form since it was observed that C. plumosus, a large form, was abundant between 20 and 30 metres. Observations of the fishing carried on in Lake Simcoe indicate that bottom-feeding fish are rarely found feeding at depths greater than 30 metres. It is therefore important to know that the greatest supply of chironomid larvae, a staple food, is located between 20 and 30 metres where it is available for bottom-feeders.
The average summer population of chironomid larvae in Lake Simcoe is about 590 per square metre over all depths. In deep water, 20 to 45 metres, the average is 676 per square metre and in depths of less than 20 metres the average is only 250. This may be considered a fauna of moderate density. Lake Mendota has more than twice as many as this and most of the small German lakes studied by Lundbeck have even greater chironomid populations. Lake Nipigon, on the other hand, was much poorer in chironomids, not only on a basis of numbers per unit area, but also on a basis of the relative proportion of chironomid larvae in the total fauna. The difference is even greater when we compare the total weight per unit area or the weight of chironomids as a percentage of the total population. Table 3 indicates the marked difference in the chironomids of the two lakes.

<table>
<thead>
<tr>
<th>Table 3. A comparison of the chironomid larvae in Lake Simcoe and Lake Nipigon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of chironomid larvae per square metre,</td>
</tr>
<tr>
<td>0-20m.</td>
</tr>
<tr>
<td>Lake Simcoe...</td>
</tr>
<tr>
<td>Lake Nipigon.</td>
</tr>
</tbody>
</table>

In Lake Simcoe the bottom fauna of deep water is made up largely of chironomid larvae, while in Lake Nipigon the chironomid larvae are far surpassed by the deep-water amphipods. The data would tend to confirm the general observation that larger lakes have increasingly smaller chironomid populations.

The question arises as to whether 590 chironomid larvae per square metre (the average population for all depths from May to October, inclusive) is a correct representation of the chironomid fauna of Lake Simcoe. During the summer chironomid larvae, pupate, emerge and are lost to the lake. The adult deposits eggs in the lake which give rise to the next year's generation. It is obvious that this cycle must cause a considerable variation in the number and size of chironomid larvae present at any given season. It is desirable to know the magnitude of this variation and the time of maximum and minimum quantities. The most complete data on this subject are the result of the excellent work carried on by Thiennemann and Lundbeck in lakes of northern Germany. Lundbeck followed the monthly variation in size and number of chironomid larvae in a part of the Plöner See for two years. His results indicate the increase in number and quantity of chironomid larvae due to reproduction and growth. They also show the decrease which results from mortality (being eaten, etc.) and to the emergence of adults. The summer's hatch of chironomid larvae brought about a great increase in numbers. A period of rapid growth during the autumn resulted in a maximum abundance in January. From that time the mortality due to being fed upon by fish, etc., brought about a decrease which reached a minimum when the greatest emergence of adults took place. These maximum and minimum numbers were the integrated result of variation in different species. The deeper waters of the Plöner See were populated by Chironomus plumosus and C. libeli-bathyphilus. The emergence of C. plumosus was not sharply defined, the last of the old generation remaining for several weeks after the first of the new generation of larvae had appeared. C. libeli-bathyphilus, on the other hand, emerged quickly during the latter part of May.

It is now possible to return to the question of the validity of our determinations of the chironomid fauna of Lake Simcoe. The variety of species living in the deep water of Lake Simcoe prevents the appearance of a definite minimum since the periods of emergence do not coincide. We must remember, however, that samples taken through the summer season include the periods at which all forms emerge and the later
periods at which all the larvae are immature. In other words our samples from May to October include the minimum occurrence and miss the maximum which, as Lundbeck has shown, exists at the end of the autumn growth. As a result, the estimate of the chironomid fauna must be lower than the yearly average for the lake.

Chironomid larvae are a staple food for bottom-feeding fish. In Lake Simcoe the Mollusca and Ephemeridae form a large part of the diet of such fish with the result that chironomid larvae are less important than usual. This subject will be fully discussed in Part II as will a further ecological function of the chironomid larvae, namely, their activity in converting organic detritus from the bottom ooze into food for other members of the lake fauna.

COLEOPTERA

The aquatic beetles in the adult form are hardly to be considered as part of the bottom fauna. The larvae are also free-swimming, but feed partly on bottom with the other members of the shore fauna. They are limited to protected situations and take little part in the ecology of the open waters in which we are chiefly interested.

Dytiscidae

Coelotomus sp. Larvae of this beetle were taken near the mouths of creeks among vegetable debris and from depths of 1 to 2 metres.

Dytiscus sp.

Thermonectes sp.

The larvae of these forms were found together in protected weedy bays, usually over a sand bottom.

Gyrinidae

Several small gyrinids were collected from protected shores in different parts of the lake. They have not been identified further.

HYDRACARINA

The abundance of water mites in Lake Simcoe is indicated both by the number taken in dredging and the much larger number found in fish stomachs. The material has been examined by Dr. Ruth Marshall of Rockford, Illinois, and has been incorporated in her paper on Canadian Hydracarina (Marshall, 1929). She records twenty-one species, four of which are new, from the Lake Simcoe material.

Limnochares aquaticus (L.). Common.

Eylais infundibularis Koen. A single specimen.

Lebertia porosa Thor. Commonly taken in whitefish stomachs.

Lebertia ontarioensis Mar. Specimens from bottom 20 metres and from whitefish stomachs.

Limnesia undulata (Müll.). From mud bottom in 8 metres of water and common in whitefish stomachs.

Limnesia histrionica wolcotti Piers. Taken at depths of 4 to 6 metres and from stomachs of whitefish and cisco.

Limnesia maculata americana Piers. Four specimens from different parts of the lake.

Species marked with an asterisk (*) are newly described in the above-mentioned paper.
60 RAWSON: BOTTOM FAUNA OF LAKE SIMCOE

Limnesia cornuta Wol. Rare species, one specimen only at depth of 1 metre.

Limnesiopsis anomala (Koen.). Common at moderate depths, e.g. 5 metres.

Hygrobes longipalpis (Herm.). Common in a variety of locations, near shore, on bottom in 5 metres and from whitefish stomachs.

Unionicola crassipes (Müll.). Fourteen specimens from a single whitefish stomach.

Neumania semicircularis Mar. Three scattered collections, one from bottom in 23 metres of water.

Neumania ovata Mar. A single specimen from 6.5 metres.

Piona constricta (Wol.). A single specimen.

Piona pugilis (Wol.). Four individuals from depths of 2 to 5 metres.

Piona turgida (Wol.). Five specimens from a single dredging.

*Piona interrupta Mar. Single specimens taken at seven different places.

*Acercus diversus Mar. One specimen taken from a depth of 2 metres.

Mideopsis orbicularis (Müll.). Common.

Arrhenurus serratus Mar. A single specimen.

It is noteworthy that the largest genus, Arrhenurus, is represented by a single specimen of the species A. serratus. Although water mites are not sufficiently abundant to form an important source of food, it was observed that they were present in one-third of the whitefish stomachs examined and as many as 30 individuals were frequently taken from a single stomach. The water mites found in stomachs of suckers and perch were few as compared with those taken from the whitefish.

Species marked with the asterisk(*) are newly described in the above-mentioned paper.
Table 4—Continued

<table>
<thead>
<tr>
<th>Species</th>
<th>Abundance</th>
<th>Range and usual habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 " exaustus Say.</td>
<td>A</td>
<td>Shore, vegetation.</td>
</tr>
<tr>
<td>17 " hirsutus Gid.</td>
<td>C</td>
<td>Shore, mud, near creek.</td>
</tr>
<tr>
<td>18 " parus Say.</td>
<td>C</td>
<td>Shore to 10 m., near vegetation.</td>
</tr>
<tr>
<td>19 " troilusis Say.</td>
<td>C</td>
<td>Protected shores with vegetation.</td>
</tr>
<tr>
<td>20 Physa ancillaria Say.</td>
<td>A</td>
<td>0-10 m., exposed sand and rock shore.</td>
</tr>
<tr>
<td>21 " " magnacustris Wilk.</td>
<td>R</td>
<td>Less exposed shores.</td>
</tr>
<tr>
<td>22 " " elliptica Lea.</td>
<td>R</td>
<td>Shore, stones.</td>
</tr>
<tr>
<td>23 " gyrina Say.</td>
<td>C</td>
<td>Shore to 10 m., swampy creek.</td>
</tr>
<tr>
<td>24 " integra Half.</td>
<td>C</td>
<td>Exposed shores.</td>
</tr>
<tr>
<td>25 Ferrissia sp.?</td>
<td>R</td>
<td>Muddy shore.</td>
</tr>
<tr>
<td>26 " fusca C.B. Ads.</td>
<td>R</td>
<td>Mud and marsh.</td>
</tr>
<tr>
<td>27 " parallela Half.</td>
<td>C</td>
<td>Shore to 5 m., protected bay.</td>
</tr>
<tr>
<td>28 Campeloma decisum Say.</td>
<td>A</td>
<td>Shore to 8 m., cosmopolitan.</td>
</tr>
<tr>
<td>29 Amnicola emarginata Kust.</td>
<td>A</td>
<td>Shore to 25 m., mud.</td>
</tr>
<tr>
<td>30 " limosa Say.</td>
<td>A</td>
<td>Shore to 35 m., sand or mud.</td>
</tr>
<tr>
<td>31 " " Say, var?</td>
<td>R</td>
<td>Shore to 10 m., mud.</td>
</tr>
<tr>
<td>32 " Lasica Pils.</td>
<td>A</td>
<td>Shore to 35 m., sand or mud, or shell vegetation.</td>
</tr>
<tr>
<td>33 " wakei Pils.</td>
<td>R</td>
<td>Shore.</td>
</tr>
<tr>
<td>34 " winkleyi Pils.</td>
<td>R</td>
<td>Shore to 10 m., vegetation.</td>
</tr>
<tr>
<td>35 " winkleyi mosleyi Wilk.</td>
<td>R</td>
<td>Debris at water level.</td>
</tr>
<tr>
<td>36 Poludestrina sp.</td>
<td>R</td>
<td>Shore to 3 m., marshy.</td>
</tr>
<tr>
<td>37 Valvata sincera Say.</td>
<td>A</td>
<td>Shore to 35 m., mud or sand.</td>
</tr>
<tr>
<td>38 " nylanderi Dall.</td>
<td>C</td>
<td>Shore to 20 m., sand.</td>
</tr>
<tr>
<td>39 " tricarinata Say.</td>
<td>A</td>
<td>Shore to 35 m., cosmopolitan.</td>
</tr>
<tr>
<td>40 " perconfusa Wilk.</td>
<td>A</td>
<td>Shore to 10 m., mud or sand.</td>
</tr>
</tbody>
</table>

In addition to the forty species listed above, several semi-aquatic and terrestrial forms were found at the water’s edge. *Succinea retusa* Lea. Two living specimens of this species, which were collected from a depth of 6 inches of water in a muddy bay, may have been washed in from shore. *Carychium exiguum* Say., was found in rotten wood, partly submerged. *Zonitoides nitidus* Müll. Frequent the water level in *Typha* beds.

Shells of the land forms *Helicodiscus parallelus* Say. and *Polygona albolabris* Say., taken at depths of 2 and 3 metres and 100 metres from shore, had probably been swept out by the current from a nearby river.

A comparatively small number of the species occurring in the lake are able to penetrate to any considerable depth. Most of the species of *Valvata* and *Amnicola* are found down to depths of 20 or 30 metres. A few species of *Planorbis*, *Physa* and *Lymnaea* reach depths of 10 metres, but the greater number of species are confined to the shore zone. As a result of this distribution we find *Amnicola*, *Valvata* and *Physa* constituting the bulk of the molluscan food of the lake fish.

PELECYPODA

The following pelecypods have been collected in Lake Simcoe during the course of the investigation. The list of Sphaeriidae is probably incomplete since the collection identified by Dr. Sterki included only those specimens taken during the first season.

Lampsilis luteolis Lamark. Of the two larger mussels in the lake *L. luteolis* was the more common. Its preferred habitat is a soft sand bottom in depths of 1 to 3 metres of water and often in the neighbourhood of *Scirpus* beds.

Anodonta grandis Say. This species was distributed very much like *L. luteolis*, the only noticeable difference being a greater abundance of *Anodonta* in protected situations. Some very large specimens taken among the reeds in Smith’s bay resembled the variety *foottana*, but further collections revealed a complete intergrading series.
Unio complanatus Solander. Since the only specimens of this species were taken at the mouths of creeks and rivers it is somewhat doubtful whether it should be included as an inhabitant of the lake.

Sphaerium erassum Sterki. This is a large species, both abundant and widespread.

Sphaerium exmarginatum Prime. Common on sandy bars and among Chara.

Sphaerium sulcatum Lamark. A large form common in sand or mud.

Sphaerium stamineum Conrad. Small numbers found on sand shores.

The genus *Sphaerium* is mostly confined to the upper eight metres and is most abundant on sand or stiff clay, in contrast with the smaller, mud-living members of the genus *Pisidium*, which are abundant in the deep water.

Pisidium adamsi Prime. A rare species found in shallow water.

Pisidium compressum Prime. This is probably the most abundant species of *Pisidium* in Lake Simcoe. It was taken in large numbers from mud and sand bottom, from shallow and deep water, and from various parts of the lake. In whitefish stomachs it was as common as *P. scutellatum*.

Pisidium pauperculum Sterki. This small form is found in deep water and frequently occurs in stomachs of whitefish.

Pisidium pauperculum nylanderi Sterki. Common in deep water.

Pisidium scutellatum Sterki. Very abundant and ranging from 3 to 40 metres in depth.

Pisidium variabile Prime. Abundant, especially on sand at moderate depths.

Pisidium vesiculare Sterki. This is not a common species, most of the specimens being found in whitefish stomachs.

Pisidium walkeri Sterki. Rare, found in mud along with *P. compressum*.

Graph number VI indicates the distribution of Sphaeriidae according to depth. The population is fairly constant through the first 10 metres, but rises in the lower sublittoral and upper profundal to a maximum at 20 metres. From point it decreases regularly to a minimum on the deep bottom. The Sphaeriidae are peculiar in being the group of bottom organisms in Lake Simcoe which show a decrease in numbers in the sublittoral zone.

When we consider the distribution of the two genera which constitute the group, we see that *Sphaerium* decrees rapidly throughout the littoral and sublittoral zones, from which region it dwindles to disappear completely at 15 metres. *Pisidium* shows an unusually symmetrical distribution from a minimum at the shore to a maximum exactly halfway down (22.5 metres) and a second minimum in the deepest water. The dredging data indicate that several species of *Pisidium* range alike from 5 to 40 metres with equal numbers on sand and mud bottom. This general distribution, together with the absence of the usual decline at the sublittoral region, would indicate that members of the genus *Pisidium* are little affected by the factors which usually control depth distribution. It is possible
from shore to 20 metres they suffer less and less from food competition with the littoral and sublittoral bottom organisms belonging to other groups. These latter forms, decreasing from the shore to the greater depths, may allow these molluscs to increase. From 20 metres to 45 metres some factor directly dependent on depth causes a steady decrease in the numbers of the *Pisidium* group.

Graph VII includes the distribution curves for *Gastropoda* and *Sphaeriidae*, as well as the combined curve representing the total mollusc population, with the exception of the larger mussels *Lampsilis* and *Anodonta*. From shore to 10 metres the gastropods outnumber the Sphaeriidae, but, unlike the latter, the gastropods show a marked decrease in the sublittoral zone. After a slight increase between 15 and 20 metres, the gastropod population falls off to a low but constant number which persists into the deepest water. This part of the curve, 25-45 metres, is altogether due to the small numbers of *Amnicola* and *Valvata* which inhabit the deepest water.

The combined curve representing the total molluscan fauna, has the sublittoral minimum impressed upon it by the gastropods, while in the deeper water it follows the pelecypod distribution since they greatly outnumber the gastropods at depths of more than 20 metres.

In different areas of the lake the molluscan population varies considerably. A minimum variation exists in the deep water where we have few species and relatively constant living conditions. In the shallow water more varied conditions of bottom material, water movements and food supply result in a corresponding variation in the molluscan fauna. In general the eastern and southern parts of the lake are shallower and support a larger number of molluscs. The richest fauna observed was in an area of 5 square miles between Georgina island and the mainland. This large bay is protected on the east by Duclos point and on the west by the Sand islands. The depth of the water in the area is seldom greater than 5 metres and in many places shallow bars approach the surface. The bottom is covered with sand, silt or shell marl and the abundance of shell marl testifies to the magnitude of the molluscan population. In dredging series V an area of at least five acres was encountered in which dead shells of Sphaeriidae and Gastropoda covered the bottom to depths of 1 to 2.5 inches. The shells were more or less broken and mixed with a small quantity of silt. In this and several other parts of the lake the dead shells were so numerous as to make the separation of living molluscs from a dredging a very lengthy operation.

In the sublittoral region of Lake Simcoe we find no definite "shell zone." In Lake Mendota, Muttkowski found a distinct shell zone between 6 and 8 metres, similar to that described by various authors as existing between depths of 6 and 12 metres. It would appear that the conditions in large lakes such as Nipigon and Simcoe are not favourable for a great production of Mollusca and accumulation of shells at this depth.

Data on the distribution of molluscs in large lakes are relatively scarce. Adamstone has studied the problem thor-
ROUGHLY in Lake Nipigon. The two lakes, Simcoe and Nipigon, have almost nothing in common in the distribution of their molluscs. The gastropods of Lake Nipigon were confined to the upper 10 metres, while in Lake Simcoe they were numerous down to 25 metres and extended in small numbers into the deepest waters. The pelecypods of Lake Nipigon were most abundant in the first 4 metres with a minimum of 45 metres and a secondary increase below that depth. In Lake Simcoe the maximum was in middle depths, 20-25 metres, with decreasing numbers towards shallower and deeper water. The factors limiting this distribution have been suggested on page 65.

That the molluscs of Lake Simcoe are an important source of fish food will appear in Part II. Among the bottom-feeding fish, particularly the whitefish, the molluscs eaten constituted about one-quarter of their total diet. Of this molluscan diet the Sphaeriidae (chiefly *Pisidium*) make up 55 per cent., *Valvata* and *Amnicola* 35 per cent., *Physa* and *Planorbis* the remaining 10 per cent.

The Microfauna of the Bottom Layers

The microfauna is a vital link in the food circulation of the lake and in many respects is as important as the larger organisms, although the difficulty of sampling microfauna has had the effect of keeping its nature more or less obscure. In Lake Simcoe two methods of sampling were employed. The heavy sampler, as described on page 23, was used to bring up an undisturbed core of bottom material with the water immediately above it still in place. The advantage of the apparatus was that it brought up a known area, 71.3 sq. cm., of bottom in such a condition that the various horizontal strata and the water immediately above it could be examined separately. The ooze sucker (page 24) was useful in making qualitative samples of the upper ooze layer.

Of the twenty samples examined ten were taken from depths of 20 to 45 metres, five between 10 and 20 metres, and five between 3 and 10 metres. The observations were made between May 9 and June 20, some in Kempenfelt bay and some in the open lake off Thorah island. Eight of the samples were taken with the ooze sucker and the remainder with the heavy sampler.

The following table summarizes the analyses of the twenty samples.

Table 5. Showing list of microfauna, occurrence at different depths and frequency of occurrence in twenty samples.

<table>
<thead>
<tr>
<th>Microfauna</th>
<th>Depth distribution</th>
<th>No. of samples which specific species occurred out of 20 examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizopoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoeba sp.</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Arcella sp.</td>
<td>+ + +</td>
<td>11</td>
</tr>
<tr>
<td>Campactus cornutus Leidy</td>
<td>+ + +</td>
<td>8</td>
</tr>
<tr>
<td>Codonella sp.</td>
<td>+ + +</td>
<td>8</td>
</tr>
<tr>
<td>Cyphoderia ampulla Ehr.</td>
<td>+ + +</td>
<td>9</td>
</tr>
<tr>
<td>Difflugia sp.</td>
<td>+ + +</td>
<td>4</td>
</tr>
<tr>
<td>Diaphragmata globulosa Duj.</td>
<td>+ + +</td>
<td>11</td>
</tr>
<tr>
<td>lobotomia Leidy</td>
<td>+ + +</td>
<td>6</td>
</tr>
<tr>
<td>pyriformis Perty.</td>
<td>+ + +</td>
<td>10</td>
</tr>
<tr>
<td>Hyalosphaenia sp.</td>
<td>+ + +</td>
<td>2</td>
</tr>
<tr>
<td>Nebela sp.</td>
<td>+ + +</td>
<td>3</td>
</tr>
<tr>
<td>Mastigophora sp.</td>
<td>+ + +</td>
<td>11</td>
</tr>
<tr>
<td>Anisonema sp.</td>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td>Euiglena sp.</td>
<td>+ + +</td>
<td>1</td>
</tr>
<tr>
<td>Heteronema sp.</td>
<td>+ + +</td>
<td>3</td>
</tr>
<tr>
<td>Trachelomonas sp.</td>
<td>+ + +</td>
<td>14</td>
</tr>
<tr>
<td>Microcystis sp. cystra.</td>
<td>+ + +</td>
<td>6</td>
</tr>
<tr>
<td>Ciliata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bursaria sp.</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>Chilodon sp.</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Chilodonomus sp.</td>
<td>+ + +</td>
<td>2</td>
</tr>
<tr>
<td>Colpoda sp.</td>
<td>+</td>
<td>7</td>
</tr>
</tbody>
</table>

RAWSON: BOTTOM FAUNA OF LAKE SIMCOE
The division of bottom organisms into macro- and micro-forms is a necessary distinction for convenience in field work but it is quite arbitrary. In some cases forms of intermediate
size have been included in both lists (Cladocera) and a few groups such as the oligochaetes and nematodes are represented in both macro- and microfauna. The above list of micro-organisms is necessarily quite incomplete, due to the small number of samples and to the difficulty of identifying some of the minute forms.

The greatest number of Protozoa are recorded from the 20-45 metre zone. This must not be taken as indicating a greater variety of Protozoa in the deep fauna since the number of samples taken in this area was twice that taken in the shallower zones. In the case of minute flagellates and ciliates the numbers were actually greater in shallow than in deep water.

The available data from Lake Nipigon deal only with the microfauna of the shallow water. Bigelow (1928) describes the forms living in the “inshore bottom systasis.” Several of the rhizopod Protozoa are common both in Lake Simcoe and Lake Nipigon as are some of the ooze-living Cladocera. Of the Rotifera, only two forms, *Monostyla lunaris* and *Philodina* sp., were found in both lakes. Bigelow distinguishes between the organisms of the “ooze film cenosis,” i.e., organisms living right in the ooze and the “associated ooze film cenosis”, made up of organisms which swim about near the ooze and are dependent upon it for food. In the samples from Lake Simcoe the division is less distinct. Some of the Cladocera taken in the ooze are known to swim freely away from it, but any absolute division into two groups would be very difficult.

Of thirty-three Protozoa listed from the bottom of Lake Simcoe, fourteen were found by Kofoid (1896) on the bottom of Lake Michigan. Smith (1893) mentions six species taken in dredgings from Lake St. Clair, only one of which was found in Lake Simcoe.

The substrate on which the microfauna is found is worthy of mention, in particular the ooze bottom of the deeper water. In the profundal zone the bottom is composed of fairly constant proportions of mineral matter and organic detritus of plant and animal origin. In the littoral and sublittoral zones the proportion of mineral matter is higher and more variable, since in this area we find bottom of pure sand, stone, hard clay, marl or combinations of these materials. The disturbing influence of water movements hinders the accumulation of soft ooze and organic debris in these upper zones. The profundal ooze has been examined more fully, partly because of the scarcity of previous observations in this field, and partly because of its comparative uniformity in composition.

The materials which compose the substrate in the profundal zone are as follows:

Mineral matter—Including particles of clay and silt with occasional sand grains and mollusc shells.

Organic matter (or detritus)

1. Plant debris:

 (a) Arising from the higher plants, aquatic or land, and including leaf particles, woody fragments and coniferous pollen.

 (b) Originating from the phytoplankton,—algae of various kinds, diatoms being most conspicuous.

2. Animal debris—chiefly planktogenous in origin, including husks of Entomostraca and Protozoa, fragments of dead bottom-living animals and fish bones. In Lake Simcoe *Bosmina* shells were the most noticeable representatives of this group.

3. Organic material not recognizable as of plant or animal origin. Mostly coprogenous, i.e. modified by passing through the alimentary tracts of bottom organisms such as oligochaetes and chironomid larvae.

The vertical distribution of these constituents in the various bottom layers may be considered from the surface layer downwards.

Layer A. A very thin film, 0.5 mm., which is not always present, is distinguished by its brownish or yellowish colour. It is composed of a flocculent organic material and the colour appears to be due to the dead and partly decomposed chloroplasts of the plankton Algae.

Layer I. From 0.5-2.0 cm. in thickness, this dark green or black layer is composed largely of organic de-
tritus, i.e. all kinds of plant and animal debris as described above. The material is semi-liquid in consistency, it abounds in bacteria and it contains very little mineral matter. Silt or sand grains falling to the bottom would settle right through this layer to rest on the next.

Layer II. From 2.5-4 cm. in thickness and composed of a thick, creamy, grey clay. This layer is predominantly mineral in constitution with a slight admixture of plant and animal detritus.

Layer III. This layer is 5 cm. in thickness and is made up of a stifferish grey clay as a matrix with black areas scattered through it. In some places this layer is almost completely blackened.* The detritus in this layer is limited to the cases of diatoms and Protozoa and coniferous pollen.

Layer IV. This layer extends at least 2 metres downwards from the lower limit of layer III. It is of stifferish, grey clay, similar to layer III, but lacking the black material. In sampling, a 12 lb. 1 1/4-in. pipe dropped a distance of 8 metres through the water was able to bury itself in this mud to a distance of 2 metres. Shells of diatoms and Protozoa are found scattered all through the clay.

As a measure of the organic material in these layers, determinations were made of the total organic nitrogen in three samples taken from each layer. These samples were taken at different parts of the lake at a depth of 30 metres. The averages of these results are included in the following tabular summary of the bottom layering.

This arrangement of strata was found to be almost uniform from depths of 25 to 45 metres, with slight variation in the thickness of the individual layers.

*Dr. E. M. Kindle of the Geological Survey, Ottawa, suggests that the black patches were due to a bacteriological action and cites a similar blackening found by himself in Bay of Fundy muds (1926). In the latter case, however, the black colour is thought to have appeared after the sample had stood for some time; while in Lake Simcoe deposits the black patches were present when the mud was first brought to view.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
<th>General characteristics</th>
<th>Percentage of moisture</th>
<th>Total organic nitrogen in p.p.m. on dry weight basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.05 cm.</td>
<td>A yellowish flocculent film not always present.</td>
<td>89%</td>
<td>1.860</td>
</tr>
<tr>
<td>I</td>
<td>0.2-2.0 cm.</td>
<td>Plant and animal detritus with little mineral matter.</td>
<td>86%</td>
<td>0.950</td>
</tr>
<tr>
<td>II</td>
<td>2.5-4.0 cm.</td>
<td>Thick, creamy green clay with little organic detritus.</td>
<td>76%</td>
<td>0.700</td>
</tr>
<tr>
<td>III</td>
<td>5.0 cm.</td>
<td>Stiffish grey clay and black patches, no true detritus.</td>
<td>74%</td>
<td>0.505</td>
</tr>
<tr>
<td>IV</td>
<td>2 metres</td>
<td>Stiffish grey clay uniform in composition.</td>
<td>74%</td>
<td>0.505</td>
</tr>
</tbody>
</table>

In these layers the microfauna was mostly confined to the upper half of layer I. When layer A was present the minute flagellates and ciliates were very abundant in it. The macrofauna were spread all through layer I; and some forms, especially the oligochaetes, were able to penetrate a short distance into layer II. The burrowing mayfly nymphs were never found more than 3 centimetres below the surface of the ooze. These nymphs are so active that it is difficult to say just where they were when the sample was taken. The chironomid larvae have their tubes in a horizontal position and are confined to layer I.

A further significance of the ooze layer and its inhabitants will be considered in Part II, dealing especially with the circulation of food materials and the transformations which they undergo on the bottom layer of the lake.

The Bottom Fauna as a Whole

Having considered the distribution of the various groups of organisms separately, it is still necessary to assemble these data into a picture of the bottom fauna as a whole. Such a picture is not to be gained by studying the bathymetric distribution of bottom organisms alone. We must also take
into account their ecological distribution, including the position of one group relative to its neighbours.

Graph number VIII presents a composite view of the numbers and distribution of the six major groups of bottom organisms, *viz.*, chironomid larvae, Mollusca, Amphipoda, ephemerid nymphs, Oligochaeta, and *Corethra* larvae. The upper curve shows the distribution of the six groups combined. The omission of a number of relatively unimportant groups such as the Trichoptera and Hydracarina adds to the clarity of the graph. These groups combined make up only 6 per cent. of the total fauna numerically.

Certain features concerning the composition of the fauna as a whole are evident from an examination of the graph. The predominance of chironomid larvae is perhaps the most striking feature. The comparative numbers of different groups could not be seen on the distribution graphs in the preceding pages since each curve was plotted to its own convenient scale. From shore to a depth of 15 metres the chironomid population is just less than the sum of all other forms. From 15 to 45 metres they greatly outnumber all other organisms combined and form 73 per cent. of the total population. It should be noted that the curves indicate numerical and not gravimetrical relations. The chironomid larvae form a smaller portion of the total fauna by weight than by numbers. The picture is even less representative of the relative values of different groups as fish food, for instance, the great bulk of chironomid larvae is less important as fish food than the seemingly insignificant numbers of ephemerid nymphs.

The bottom fauna, exclusive of chironomid larvae, is represented by the area between the curve of chironomid distribution and that of the total fauna. In the littoral and sublittoral zone this non-chironomid fauna is fairly large. In the deeper water, 15 to 45 metres, it maintains a fairly constant amount. While the total of this fauna is constant, the distribution of its separate components is quite irregular. In the shallow water the Gastropoda, Amphipoda and Ephemeroptera are predominant, while in the deeper water they are replaced by Pelecypoda, Oligochaeta and *Corethra*.

With reference to the distribution, rather than the composition, of the fauna as a whole, four distinct features are to be noted.

In the shore area, 0-1 metre, the population is represented as beginning at the small number of 15.5 per 500 square centimetres (the equivalent of one dredging). Shores are in general considered to have a rich fauna, this is, of course, disregarding the semi-barren and exposed shores. In Lake Simcoe the shore line is 44 per cent. exposed and stony, 33 per cent. bare sand with only 10 per cent. protected stone, 10 per cent. mud with aquatic vegetation and 3 per cent. sand with vegetation. The greatest numerical population anywhere in the lake is to be found in the protected stony bays and the
smaller population found on the wave-washed sand beaches. The shore area is therefore a region of extremes in population, but the predominance of exposed shore, 77 per cent., results in a low average population.

In following the distribution curve a large population may be observed between the depths of 3 and 8 metres where the littoral species are the most abundant and find most favourable conditions. As mentioned above, this peak is due largely to the Gastropoda, Amphipoda and ephemerid nymphs which characterize the littoral and sublittoral zones.

The number of organisms drops to a minimum at 12.5 metres. This feature is found in the distribution of most groups of bottom organisms in Lake Simcoe and it has been observed in several other lakes. Lundbeck (1925) explains the situation by saying that the sublittoral zone, in which the minimum occurs, is a region of transitional conditions between the littoral and the profundal zones. Since the sublittoral has little distinct fauna of its own, it is populated by a mixture of profundal and littoral species, neither of which find the conditions favourable.

A fourth point of special interest in the distribution of the fauna as a whole is to be found in the maximum abundance in the 30-35 metre zone. This peak is due to the chironomid larvae and does not correspond with the maximum fauna as measured by weight, the latter maximum being found between 20 and 25 metres, an important feature in view of the fact that bottom-feeding fish do most of their feeding at depths of less than 25 metres.

The Composition of the Bottom Fauna of Lake Simcoe as Compared with That of Other Lakes

In dealing with the separate groups, comparisons have been made between the forms, number and distribution of bottom organisms in Lake Simcoe and those of other lakes. We may now compare the general constitution of bottom fauna in different lakes. This subject is dealt with briefly since differences in the fauna of lakes will be discussed in later sections under the factors limiting bottom fauna and the comparative productivity of lakes.

Lake Nipigon. The bottom fauna of Lake Nipigon differs most widely from that of Lake Simcoe in possessing large numbers of a deep water amphipod, *Pontoporeia hoyi*. The deep-water fauna of Lake Simcoe is largely composed of *Chironomus* larvae. The difference is an important one since studies of fish food in the larger lakes have shown that amphipods are a staple food of bottom-feeding fish. A larger number of *Oligochaeta* is found in Lake Nipigon, but only at depths of more than 60 metres. Comparing similar depths in the two lakes it is found that the *Oligochaeta* in Lake Simcoe are slightly more numerous.

Lake Mendota. In Lake Mendota, Juday has demonstrated an enormous production of *Corethra* larvae in the deep water. In Lake Simcoe, *Corethra* larvae are relatively scarce. The whole fauna of the deep water in Lake Simcoe exhibits a greater variety than that of Mendota. This condition may be due to the greater stratification and resulting stagnation in the lower water of Lake Mendota since relatively few forms are able to withstand the greatly reduced oxygen supply. The shore faunas of the two lakes are quite similar in composition, but Lake Mendota has a greater quantity because it has a smaller percentage of semi-barren sand and stone shore.

Green Lake. Juday (1924) studied Green Lake, Wisconsin, a small, deep lake. The abundance of *Pontoporeia hoyi* and *Oligochaeta* in its deeper water suggests a resemblance to the fauna of Lake Nipigon and the Great Lakes, due no doubt to its great depth.

Oneida Lake. The bottom fauna of a shallow bay in Oneida Lake was studied by Baker (1916-18). The fauna was more than half composed of *Mollusca*. In even the richest molluscan habitat of Lake Simcoe (page 67) the population of this type was much smaller than that of Oneida Lake.

North German lakes. Lundbeck’s report (1925) of the investigation of 57 lakes in northern Germany shows a great variety of bottom fauna. Most of these lakes are small and
exhibit a much greater stratification than does Lake Simcoe. A larger one, the Plöner See, is in some features quite comparable to Lake Simcoe, as will be clearly indicated in a later section, page 94.

The Yxta Lakes, Sweden. Alm (1922) studied 19 Swedish lakes with special reference to the relation of bottom fauna to fish production. The fauna of these lakes resembles that of Lake Simcoe in having a predominance of chironomid larvae over all other organisms. Their fauna differs in having more Corethra and a smaller total quantity than that of Lake Simcoe.

FACTORS LIMITING THE QUALITY AND DISTRIBUTION OF BOTTOM FAUNA

The physical and chemical conditions that control the life and life processes in a lake may be unified by tracing them back to two fundamental conditions. The first is the shape of the lake, which must include its depth and area and the conformation of its shores. The second is the geographical position of the lake, including the nature of its drainage area and the climatic conditions of the region. These conditions are linked up with the fauna and flora of the lake to form a working unit or microcosm as Forbes (1925) so aptly expresses it.

Such conditions as the temperature and the chemical properties of the water are commonly spoken of as factors limiting the life of the lake. That they affect the life of the lake is not to be denied, but they are certainly not simple or isolated factors. The consideration of a few examples will serve to show that each of these "factors" is the culmination of a number of agencies.

The temperature of the water in a lake depends on its size and the climatic conditions which exist in the region. Thermal stratification, if it exists, is largely due to the depth and area of the lake, to the air temperature and to winds. The chemical nature of the water is directly affected by the dissolved and suspended materials washed in from the surrounding country. It is also influenced by the temperature, the thermal stratification and by the life processes of its flora and fauna. Winds, acting upon a lake, according to its size and stratification, set up various currents and wave actions. These currents and waves have their effect on the temperature and on the deposition of bottom materials. Light is a limiting factor for plant growth and indirectly affects the distribution of animal life. Light penetration, on the other hand, is limited by the dissolved or suspended material in the water and by absorption into the water itself.

In this most complex manner are the physical and chemical factors of the lake interrelated and interdependent. In an equally complex manner the biological activities of the lake are interrelated both among themselves and with the physical and chemical activities. The "factors" must be separated for convenience in investigation and discussion but they should be thought of both as cause and effect and not as independent agencies.

The factors influencing the bottom fauna of Lake Simcoe are dealt with in the following order:

Bottom deposits
Water conditions
 Temperature
 Oxygen supply
 Water movements (waves and currents)
 Light penetration
Biological conditions
 Plants, protective, and food relations
 Animal associations and competition
Résumé of the most active factors in Lake Simcoe.

Bottom deposits

The character of the bottom affects the distribution of bottom organisms in several ways. The relation may be purely physical, as in the case of oligochaetes which are unable to penetrate hard clay. Certain chironomids are found in both mud and sand, but much more abundantly in the mud since food material is scarce on the sand bottom. The rela-
tion may have its effect through the respiration directly, as when silt clogs the respiratory mechanism or indirectly where an excessive decomposition of bottom materials reduces the oxygen supply to an amount insufficient for the needs of the organism.

The greatest variation in the character of the bottom is observed in the littoral zone where extremes from bare sand beach to rich muddy bays are found. The bottom materials of this zone contain a large proportion of inorganic matter as compared with the depositions in deeper water. In Lake Simcoe, stone, sand and mud are found at the water level according to the protection which the shore receives from wave action. In the lower littoral and sublittoral zones hard clay and marl are to be found as well as the three aforementioned types. In Lake Simcoe there is no definite shell zone (page 67).

The oozy bottom mud of the deep water showed little variation except in the thickness of its constituent layers (page 74). In Kempenfelt and Cook's bays the detritus was measurably deeper than in the open lake.

Throughout the lower littoral and sublittoral zones limitation of the fauna by the nature of the bottom is more noticeable than in the shore zone where the effect of wave action predominates over other factors. In the profundal zone the uniform character of the bottom makes it difficult to observe the effect of bottom deposits on the fauna.

A noteworthy example of limitation in distribution by the nature of bottom is furnished in Lake Simcoe by the larger pelecypods, *Lampsilis* and *Anodonta*. They show a distinct preference for soft sand bottom, being only occasionally found on mud or clay. In the deeper water, *Chironomus plumosus* is confined to the lower profundal zone with the exception of a few muddy areas in which it has been able to extend its upward range to a depth of 7 metres.

In Lake Simcoe the bottom fauna is varied to a comparatively small extent by the nature of the bottom, due to the magnitude of the deep-water area in which the bottom is of a uniform character.
incomplete, table 1, page 14, shows in July a moderate stratification and a deficiency of oxygen in the deep water. This deficiency was beginning to appear on June 20 (\(0_2 = 4.3\) p.p.m.) and had disappeared on August 30, when bottom oxygen determinations indicated 6.3 p.p.m. at 25 metres. It will be seen below that these determinations of bottom oxygen may not be fully indicative of the actual conditions under which the organisms are living.

Lake Simcoe apparently does not suffer from “winter stagnation.” Observations taken on March 2, 1928, show a practically uniform temperature of 0.8°C. from top to bottom in 20 metres of water. The bottom water contained 9.45 p.p.m. of oxygen. Since an ice-layer 18 inches thick covered the surface of the lake, the surface water would have no means of renewing its oxygen supply. We may conclude that the life processes and the decomposition of bottom materials were so much reduced by the low temperature that the oxygen supply was not noticeably lowered.

The oxygen supply. The dissolved oxygen of the shallow water is usually quite sufficient for the needs of its fauna. Waves dashing on the shore cause a great aeration of the water, which has its effect on the shore fauna. A striking example of this is the occurrence of a stonely nymph, *Perla* sp., on rocky shores of Lake Simcoe, although it is typically an inhabitant of the swifter, stony parts of streams.

The maintenance of an adequate supply of oxygen in the deeper water is a much more serious problem. The oxygen supply in the lower strata is dependent upon the circulation of water rather than on direct diffusion from the surface.

Metabolic activities of the bottom fauna and the decomposition of bottom debris combine to use up the oxygen of the bottom water. Since these processes go on in the upper layers of the mud there is a minimum quantity of oxygen in the mud, and a considerable gradient of increasing oxygen content may exist from the mud into the first two metres of water above it. Alsterberg (1922) demonstrated this condition and described it as “microschichtung” in contrast with the macroschichtung or greater stratification with which we are familiar. As a result of this “microschichtung” the usual determination of bottom oxygen, made 1.5 to 2 metres above the bottom, may or may not represent the actual oxygen content at the surface of the mud. An oxygen content of 5 p.p.m. at 2 metres above the bottom may merely indicate a steep gradient from this value to an oxygen deficiency, e.g. 1.0 p.p.m., at the mud surface.

A few of the profundal species are able to withstand a complete deficiency of dissolved oxygen for some months. In Lake Mendota, during a three-month period of summer stagnation, there is frequently no free oxygen in the bottom water (Birge and Juday, 1911). Living under such conditions is found a fauna specially equipped for respiration under difficulties. The larvae of *Chironomus plumosus* have both ventral and anal blood gills and possess haemoglobin to aid in respiration. The Oligochaete, *Tubifex*, buries the anterior portion of its body in the mud but waves the posterior part in the water. A third inhabitant of stagnant-bottom types is the larva of *Corethra*, which is able to swim freely away from the bottom and come in contact with more highly oxygenated water.

In the deeper water of Lake Mendota, Juday found only four common forms, *Corethra punctata*, Oligochaeta, *Chironomus tentans* and *Pisidium idahoense* with a small number of *Protenthes choreus*. In north German lakes, Lundbeck found a similar paucity of species in the deep water. He believes that most of the bottom species are excluded from the deeper water by the lowered oxygen supply.

In Lake Simcoe a larger number of species, especially among the chironomids, occur in the profundal fauna. It is apparent that the lesser deficiency of oxygen in Lake Simcoe allows a greater number of species to penetrate the deep water, although the more abundant species are those with special respiratory adaptations and low oxygen requirements, e.g. *C. plumosus* and Oligochaeta.

In Lake Nipigon the instability of stratification and the magnitude of deep-water currents combine to ensure an adequate supply of bottom oxygen which rarely reaches a
value of less than 6 p.p.m., even at depths of 90 metres (Clemens, 1923). As a result it was found that the oxygen supply was not a limiting factor for the bottom fauna (Adams-tone, 1924).

The carbon dioxide content of water is seldom sufficiently great to have any noticeable effect on the bottom fauna. In Lake Simcoe, with a moderate supply of bottom oxygen, the influence of carbon dioxide is considered negligible.

Water movements

Waves.—The effect of wave action on the shore fauna is one of the most obvious ecological relations in the lake. The waves act in two ways, by modifying the shore itself and by affecting the organisms which inhabit the shore zone. On the sand beaches the force of the waves causes frequent movement of the particles and the constant washing prevents the accumulation of nutritive organic debris. This type of shore in Lake Simcoe is the most sparsely populated region in the lake, supporting only a few chironomid larvae and nematodes. On the exposed rocky shores the food is less scanty and some bottom organisms find shelter between the stones and under their edges. These forms are all adapted to the strenuous conditions. Many, like the larvae of the beetle, *Psephenus*, have greatly compressed bodies, some are able to anchor themselves by sucking mechanisms, as the leeches, while others have reinforced bodies or cases to resist the wave action, such as the heavy-shelled molluscs or the mayfly nymph, *Baetisca obesa*. Muttkowski (1918) has made an extensive study of the shore fauna of Lake Mendota and presents full data as to the effect of wave action in limiting distribution. In Lake Mendota the effects of wave action were confined to the first metre of depth while in the larger lake, Simcoe, the direct effects were found to reach a depth of 2 metres. Indirectly, the effects of wave action extend to a much greater depth since they are instrumental in causing currents.

Currents.—The present knowledge of currents and their effects on the ecology of fresh water lakes is extremely limited. In larger lakes, such as Lake Nipigon or the Great Lakes, is found evidence of currents in the rolling and dragging of gill nets. In smaller lakes the evidence is less obvious, but we must recognize the importance of currents in affecting such fundamental conditions as the bottom oxygen supply. Scott, in 1921, made an analysis of the physiography and geology of small inland lakes in Michigan. He discusses the origin and nature of currents in these lakes chiefly in connection with the processes of erosion and sedimentation. Lundbeck (1926) makes considerable use of currents in explaining the biological phenomena of small north German lakes. There is still a very great need for a thorough study of the nature of currents as applied to biological problems in inland lakes.

Sedimentation in lakes is directly affected by the existing currents. The inorganic materials such as silt are carried into the lake by streams or produced by wave action from the grinding of shore materials. The place where such material is deposited depends on the strength of the current and on the size and specific gravity of the particles. In a similar manner organic materials arising within the lake or swept in from the land are dependent upon currents for their distribution. The streams which drain into Lake Simcoe have not sufficiently strong currents to carry materials 8 to 10 miles to the centre of the lake. The continued deposition in the open water must be regarded as the result of currents which arise within the lake itself. Currents are known to be the agency responsible for the formation of “shell zones” in the sublittoral region of lakes. Lundbeck investigated these phenomena and found that the action of the currents included both the carrying and accumulation of empty shells and the transportation of living molluscs. The absence of a definite shell zone in Lake Simcoe is interpreted as the combined result of shore conformation and the irregular distribution of living molluscs rather than any lesser activity on the part of currents.

The stratification and aeration of the deeper water are dependent upon currents to a considerable extent. The transfer of oxygen by diffusion from surface to bottom is so
slow as to have little or no effect on the bottom water in the profundal zone. The amount of oxygen reaching this layer is dependent on the circulation of the water, including the spring and fall turnover and currents. These currents appear to be more or less active throughout all seasons with the possible exception of the winter period when the ice covers the surface and protects it from winds. The amount of oxygen present at the bottom is dependent on the rate at which decomposition and animal metabolism are using it up. This does not alter the primary statement that the currents control the amount of oxygen that reaches the bottom.

In contrast to these indirect methods in which currents affect the distribution of bottom organisms, we have instances in which the influence is direct in the transportation of living forms by currents. Lundbeck believes that Mollusca (Pisidium) are carried considerable distances by the current. His conclusions are based on observations of variation in seasonal distribution of these forms. They reached their maximum depth at the period of strongest currents regardless of other water conditions. The transport of bottom organisms in their immature stages must influence their final distribution.

In some of the aquatic insects, e.g. Chironomus, Corethra or Ephemera, the eggs are laid at the surface and the larvae live on the bottom in deep water. The immature stages may be carried great distances before reaching the bottom. Corethra larvae do not seek the bottom until they are of considerable size and are thus exposed to the activity of currents over a longer period than other insect larvae.

Light penetration. From observations made at different seasons it was found that Secchi’s disc could be seen at an average depth of six metres in the water of Lake Simcoe. This comparatively high degree of transparency was further exemplified by the occurrence of phytoplankton at an unusual depth.

The daily vertical migration of Entomostraca and Corethra larvae observed in the lake is very likely a phototropic effect, but the movement has not been observed to have any effect on the general ecology of the lake.

From the complex maze of biological interrelations we may discuss a few of the more important means by which the bottom organisms are influenced by the flora and fauna of the lake.

Plants. The rooted aquatic plants in the lake are limited by the bottom deposits, light penetration, water movements, temperature and the chemical condition of the water. These plants are important chiefly as shelter for the bottom organisms and to a lesser extent as food. The contribution which the dead, rooted aquatic make to the detritus is small in a lake of the size of Lake Simcoe.

The sheltering effect of the rooted aquatic plants is most readily observed in the littoral zone where these forms abound. Intensive studies of the “weed fauna” have been made by Richardson, Baker and Muttkowski. The effect of the rooted plants in the sublittoral is less easily observed. Chara beds in Lake Simcoe are found from 2 metres down to a depth of 15 metres and they are always thickly populated. The fauna of Chara beds is largely composed of the amphipod, Hyalela knickerbockeri, caddis larvae and gastropods. It was observed that the Hyalela and several species of caddis were found only in Chara at the deeper part of their range. Chara has the effect of sheltering and providing food for these forms, both directly and indirectly through the microorganisms which it harbours. It is also possible that at depths of 15 metres the amphipods and caddis benefit by the fact that growing plants absorb carbon dioxide and release oxygen. In the shallower water this effect is probably not felt since the oxygen is usually high (Klugh, 1926). In the same way, though to a lesser extent, the bottom covering of Cladophora supported a large bottom fauna. The occurrence of Cladophora at 13 and of Chara at 15 metres is evidence of the effective penetration of light into the water of Lake Simcoe.

The phytoplankton is limited by light penetration, temperature and the chemical nature of the water. In the living condition it has no effect on the bottom fauna, but the
dead phytoplankton adds to the bottom detritus and as such forms a major source of food for the bottom population.

The action of bacteria in causing decomposition of the organic constituents of the ooze is an important factor, especially in the deeper water. The effect of varying degrees and kinds of decomposition on the bottom fauna is probably great, although we as yet know very little about the process.

Animals. The effect of animals or animal communities on the bottom fauna is largely a matter of food. One bottom species preys upon another or competes with it for the same food. Most of the deep-water organisms are detritus eaters and the detritus includes a considerable quantity of microfauna. A smaller group of deep-water organisms preys on other members of the bottom fauna. Lundbeck has shown that some species of *Tanypus* and of *Cryptochironomus* eat smaller chironomid larvae and small Tubificidae. *Corethra* belongs to neither of the above groups, being a plankton feeder. Alsterberg (1924) and Lundbeck (1926) working independently came to the same conclusion, i.e. that *Corethra* distribution was limited by the numbers of its food organism *Cyclops*. As a result of observation in shallow water, Muttkowski suggests that *Corethra* eats detritus. It is quite conceivable that the feeding habits of a form which ranges over such widely different habitats should vary in these extremes of location.

In some few cases the competition for space may be a factor in the distribution of organisms, though the effect is usually active through feeding or respiratory activities. Parasitism among bottom forms is likewise unimportant.

The wider question of animal interrelations, especially that of the role of bottom fauna in the circulation of food in the lake, will be more fully discussed in Part II.

Résumé of the Principal Factors Active in Limiting the Distribution and Quality of Bottom Fauna in Lake Simcoe

The composition of bottom material assumes a moderate importance in controlling the distribution and quantity of bottom organisms in the littoral and sublittoral zones. In the profoundal zone the effect reaches a minimum because of the uniformity of bottom composition. Temperature, although it has important indirect results, appears to have little direct effect on distribution in Lake Simcoe since the chief “cold-stenothermic” organisms, relict Crustacea, are practically absent. The warmth of the bottom water is suggested as the excluding factor for these relics. Thermal stratification and the resultant low oxygen supply in deep water is of more importance in Lake Simcoe than in a large lake such as Lake Nipigon. The lowered oxygen of deep water has a considerable effect in Lake Simcoe, but the resultant limitation of profoundal species is less marked than in Lake Mendota or in Lundbeck’s north German lakes. In a similar manner the currents are probably less active than in Lake Nipigon but have more effect in Lake Simcoe than they have in smaller lakes. Wave action is a powerful factor in Lake Simcoe because its shores are largely unprotected. The result is seen in the extreme paucity of organisms living on the bare sand and stone shores. The light penetrates deeply into the clear water of Lake Simcoe and results in a deep range of plant growth. The biological interrelations among the bottom organisms of Lake Simcoe are the usual complex combination of food competition and circulation.

LAKE TYPES

In the last decade European workers have accumulated data on the bottom fauna of a large number of lakes. As a result of these comparative studies they have made great progress in classifying lakes on a basis of variation in fauna and life conditions in the lakes.

Thienemann recognized distinct types of lakes characterized by differences in the species living in their profoundal zones. For instance, a lake whose profoundal zone was inhabited by the larvae of *Chironomus plumosus* differed in such fundamental properties as the oxygen content of deep water, from lakes inhabited by *Tanytarsus* larvae. In Thienemann’s (1924) division the oxygen relations were the important factor.
Naumann (1921), comparing the plankton of lakes, distinguished, on a basis of the dissolved nutritive matter, two types, "Oligotrophic," poor in nutritive matter, and "Eutrophic," rich in nutritive materials. Since the oxygen in a lake is used up alike by living and dead organisms, it follows that an eutrophic lake is poor in oxygen, while an oligotrophic lake is rich in oxygen. Combining the classifications so far we have two types: I. Oligotrophic lakes, poor in food, rich in oxygen and with *Tanytarsus* larvae a typical profundal species; II. Eutrophic lakes, rich in food, poor in oxygen and with *C. plumosus* a typical profundal species. Thiemann distinguishes a third type, the "Dystrophic" lake, in which the humus content of the mud was more important in limiting the fauna than the oxygen or nutritive factors. This type was characterized by the larvae of *Corethra*.

After making a survey of the bottom fauna in 57 lakes in northern Germany, Lundbeck (1926) has made further divisions. His major contribution has been a division of each of the three main types, eutrophic, oligotrophic and dystrophic, into three subclasses according to the humus content of their bottom deposits. These three classes are: A, Oligohumus lakes, with thoroughly decomposed bottom; B, Mesohumus lakes with humus mud and slightly coloured water; C, Polyhumus lake with humus or peaty mud bottom and humus coloured water. Lundbeck makes a classification of thirty possible lake types by a further division of mud classes, A and B on a basis of mud composition and a further division of trophic classes I and II on a basis of bottom fauna. Of these thirty possible types he has been able to find representatives of at least seventeen among the European lakes studied prior to 1926.

In the classification of Lake Simcoe we may disregard the meso- and polyhumus types which are small lakes with humus or peaty bottom. Humus bottom is the result of incomplete decomposition of allochthonous (shore or land produced) detritus, a condition which could only exist in small, somewhat stagnant lakes. The bottom of Lake Simcoe is, according to Lundbeck's classification, a definite oligohumus type, that is, characterized by much-decomposed detritus. This material is also known to bottom investigators as "vollgyttja," in contrast to other bottom detritus known as chitygyttja, diatomeengyttja, etc., according as they show a predominance of the chitinous remains of Entomostraca, diatom cases, etc.

Lake Simcoe exhibits a lowered oxygen supply in the deep water and a moderately high production of plankton. It is therefore to be considered "eutrophic" rather than oligo- or dystrophic. That it is not entirely eutrophic is shown by the fact that its profundal fauna is not completely limited by the scarcity of oxygen (pages 84-85).

Having decided that Lake Simcoe is an eutrophic lake with an oligohumus type of bottom, we may compare the depth distribution of its fauna with that of other lakes of the same type. Diagram 2 is a copy of Lundbeck's diagram, illustrating the distribution by weight of bottom organisms in a typical eutrophic lake. On the left he has plotted the main factors limiting this distribution, and on the right we have added the distribution of bottom fauna by weight in Lake Simcoe. In Lundbeck's curves the littoral maximum is due to the combined effect of rooted aquatic plants *A*, the high oxygen content *B*, and the high temperature of the water *C*. The minimum in the lower sublittoral is due to the comparatively small numbers of sublittoral organisms. The profundal zone is marked by lowered temperature and oxygen, both of which fall off rapidly at the lower limit of the sublittoral zone since this coincides in a general manner with the thermocline. The maximum fauna in the upper profundal zone is followed by a decrease in the lower profundal. In the latter the mud deposits are much thicker and the oxygen content, which was small in the upper profundal, is still smaller in the deepest zone. The diagram presents a picture of theoretical distribution of bottom fauna in a typical eutrophic lake, but just such conditions were actually found by Lundbeck in the Plöner See.

The curve on the right represents the distribution by weight of bottom organisms in Lake Simcoe, plotted on the
same depth scale as the rest of the diagram. The two curves have in common three main features, a maximum in the shallow water, a minimum in the sublittoral and a second maximum in the profundal. In Lake Simcoe each of these points is found at a slightly greater depth than the corresponding point in the Plöner See. The reason for this shifting is obvious. In Lake Simcoe typical littoral conditions were found from 0 to 5 metres and sublittoral from 5 to 14, as compared with 0 to 4 and 4 to 12 metres in the corresponding zones of Lundbeck's lakes. Since littoral and sublittoral

![Diagram 2](image)

Diagram 2. Curve showing the distribution of bottom fauna in a typical eutrophic lake (Plöner See). On the left is a diagrammatic representation of the limiting factors. On the right is the distribution of bottom fauna in Lake Simcoe.

Legend.

- Littoral fauna — — — — — Sublittoral fauna — — — —
- Profundal fauna — — — Total fauna
- Rooted aquatic vegetation...A Oxygen content of water.....B
- Temperature..................C Mud (detritus) deposits.....D

(Diagram after Lundbeck (1926) with the addition of the curve from Lake Simcoe)

conditions depend largely on wave action it is to be expected that the littoral and sublittoral zones will extend to a deeper level in a large lake than in a small one. Accordingly, the sublittoral minimum is found at successively greater depths in the distribution of fauna in the Plöner See, Lake Simcoe and Lake Nipigon.

A second difference in the distribution of fauna in Lake Simcoe is seen in the lower profundal where the production does not fall off as rapidly as it does at the corresponding depths of the Plöner See. This condition has already been referred to in connection with the oxygen supply. In the deep water of Lake Simcoe the oxygen is reduced but not to such a degree as to prevent the penetration of a number of species into the deep water. The lower profundal zone is, by reason of its greater oxygen supply, much more productive in Lake Simcoe than in the north German lakes.

The system of classification of lakes as presented by Lundbeck sums up the recent findings of European workers in this field. It accounts for the major differences in the bottom fauna of lakes on a sound basis of ecological conditions. The classification is unsatisfactory for large lakes such as Lake Nipigon, because in these lakes, due to the instability of stratification, the bottom fauna is not much affected by the factors which predominate in small lakes. That Lake Simcoe fits so well into the classification may be recognized as further evidence of the validity of the system.

B. THE QUANTITY OF BOTTOM FAUNA IN LAKE SIMCOE

The last section, which dealt with quality and distribution of bottom organisms in Lake Simcoe, was based largely upon the findings from 208 dredgings in the open water and 25 quantitative collections along the shore. The following section presents the quantitative analyses of the same dredgings, both from the numerical and gravimetrical points of view. The average dry weight of individual organisms has
been determined by experiment and is applied to convert the numerical data into gravitational form (page 25). In view of the seasonal variation in the amount of bottom fauna it should be stated that the 200 dredgings were spread fairly uniformly over the months May to October inclusive.

Table 7 shows the average number per square metre of the important groups of organisms found at different depths.

<table>
<thead>
<tr>
<th>Depth zone</th>
<th>Ulva</th>
<th>Oligochaete</th>
<th>Amphipoda</th>
<th>Ostracoda</th>
<th>Nephthys</th>
<th>Terebellida</th>
<th>Mollusca</th>
<th>Average No. of all organisms per sq. metre</th>
<th>Average dry weight of all organisms* in mgm. per sq. metre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore zone</td>
<td>152</td>
<td>48</td>
<td>54</td>
<td>22</td>
<td>28</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>0-1 m.</td>
<td>300</td>
<td>90</td>
<td>124</td>
<td>82</td>
<td>112</td>
<td>36</td>
<td>0</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>0-5 m.</td>
<td>450</td>
<td>54</td>
<td>130</td>
<td>78</td>
<td>138</td>
<td>30</td>
<td>2</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>10-15 m.</td>
<td>240</td>
<td>52</td>
<td>54</td>
<td>88</td>
<td>94</td>
<td>24</td>
<td>9</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>15-20 m.</td>
<td>540</td>
<td>28</td>
<td>82</td>
<td>118</td>
<td>10</td>
<td>28</td>
<td>15</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>20-25 m.</td>
<td>620</td>
<td>0</td>
<td>9</td>
<td>114</td>
<td>2</td>
<td>80</td>
<td>20</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>25-30 m.</td>
<td>780</td>
<td>0</td>
<td>8</td>
<td>103</td>
<td>0</td>
<td>106</td>
<td>62</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>30-35 m.</td>
<td>860</td>
<td>0</td>
<td>7</td>
<td>84</td>
<td>0</td>
<td>98</td>
<td>74</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>35-40 m.</td>
<td>760</td>
<td>0</td>
<td>5</td>
<td>52</td>
<td>0</td>
<td>118</td>
<td>70</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>40-45 m.</td>
<td>740</td>
<td>0</td>
<td>6</td>
<td>34</td>
<td>0</td>
<td>120</td>
<td>72</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

*Weight of the mollusc shells deducted.

The above table serves to recall the relative abundance and distribution of the different groups of bottom organisms, although the same data have already appeared in graph VIII. The column of miscellaneous organisms includes nematodes, leeches, hydarchnids, the Odonata, and scattered representatives of other insect orders. The abundance of these forms near shore is indicated by an average of 84 per square metre in the 0-1 metre zone. It should be stated that the larger pelecypods are not included and that the weight of molluscs is given as body weight alone, exclusive of the shell.

Since the 5-metre depth zones are of unequal areas, page 11, an average of the dry weight of bottom fauna of the nine zones is not a true representation of the bottom fauna of the whole lake. Table 8 shows a further analysis of the data, including the dry weight of the total fauna supported in each zone.

Table 8. Showing the area, average amount of bottom organisms per unit area and total dry weight of organisms in each depth zone.

<table>
<thead>
<tr>
<th>Depth zone</th>
<th>Area of each zone in hectares</th>
<th>Dry weight of organisms per sq. metre</th>
<th>Total dry weight of organisms in each zone in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 m.</td>
<td>650,000</td>
<td>12.8</td>
<td>8,064,000</td>
</tr>
<tr>
<td>5-10 m.</td>
<td>670,000</td>
<td>14.8</td>
<td>9,916,000</td>
</tr>
<tr>
<td>10-15 m.</td>
<td>720,000</td>
<td>16.5</td>
<td>4,680,000</td>
</tr>
<tr>
<td>15-20 m.</td>
<td>760,000</td>
<td>17.7</td>
<td>8,892,000</td>
</tr>
<tr>
<td>20-25 m.</td>
<td>670,000</td>
<td>14.2</td>
<td>9,514,000</td>
</tr>
<tr>
<td>25-30 m.</td>
<td>810,000</td>
<td>13.4</td>
<td>11,583,000</td>
</tr>
<tr>
<td>30-35 m.</td>
<td>230,000</td>
<td>12.2</td>
<td>2,967,000</td>
</tr>
<tr>
<td>35-40 m.</td>
<td>400,000</td>
<td>9.5</td>
<td>380,000</td>
</tr>
<tr>
<td>40-45 m.</td>
<td>1,000</td>
<td>8.5</td>
<td>85,000</td>
</tr>
</tbody>
</table>

The total water area of Lake Simcoe is equal to 4,530,000 hectares and the dry weight of its total fauna is 56,081,000 kilograms. The average bottom fauna is therefore 56,081,000 + 4,530,000 = 12.38 kilograms per hectare or 11.0 lb. per acre (mollusc shell deducted).

It is probably more instructive to compare the bottom fauna in the ecological zones, littoral, sublittoral and profundal, than in the arbitrary depth zones used in tables 7 and 8. Table 9 shows the average number and quantity of bottom fauna in the various ecological zones of Lake Simcoe.

In table 9 two features are especially clear. The minimum fauna is found in the lower sublittoral, only 562 organisms per sq. metre, and a dry weight of only 6.3 lb. per
TABLE 9. Showing the amount of bottom organisms present in the various ecological zones of Lake Simcoe measured as numbers per square metre and kilograms dry weight per hectare.

<table>
<thead>
<tr>
<th>Ecological zone</th>
<th>Average no. of organisms per sq. m.</th>
<th>Average dry wt. of organisms kgm. per ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Littoral zone 0-5m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>788</td>
<td>12.8</td>
</tr>
<tr>
<td>Sublittoral zone 5-14m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper sublitt. 5-10m.</td>
<td>926</td>
<td>14.8</td>
</tr>
<tr>
<td>Lower sublitt. 10-14m.</td>
<td>764</td>
<td>6.3</td>
</tr>
<tr>
<td>Profundal zone 14-45m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper prof. 14-24m.</td>
<td>868</td>
<td>12.8</td>
</tr>
<tr>
<td>Lower prof. 24-45m.</td>
<td>1020</td>
<td>12.4</td>
</tr>
</tbody>
</table>

In other words, the lower sublittoral zone supports only half the weight of fauna found in each of the other zones. In the profundal zone it is seen that the maximum number, 1097 per sq. metre, occurs in the lower profundal, while the maximum weight appears in the upper half of the profundal zone. The reason for this phenomenon was discussed on page 55, under chironomid larvae, since they are responsible for the position of these two maxima.

Graph IX has been constructed to show the difference between distribution of bottom fauna by weight and by number. In the curves on this graph the aforementioned maximum weight is in the upper profundal at 20.5 metres, and the maximum number is in the lower profundal at 32.5 metres. A further difference is to be seen in the littoral and sublittoral zones. In this region the weight curve rises highest from the numerical curve, indicating that in this region the organisms are heavier than in any other. On a further examination of the data it was found that this condition was due to the amphipods and larger gastropods which reach their maximum abundance in this region.

Summary

The quantity and composition of the bottom fauna of Lake Simcoe may be summed up as follows:

1. The average number of macroscopic bottom organisms over all depths is 820 per sq. metre, or 776 per sq. yard.
2. The average dry weight of all organisms over all depths is 12.38 kgm. per hectare, or 11.0 lb. per acre.
3. This fauna is composed as follows:

<table>
<thead>
<tr>
<th>By numbers</th>
<th>By weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chironomid larvae</td>
<td>61.5%</td>
</tr>
<tr>
<td>Ephemerida</td>
<td>4.4%</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>5.3%</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td>8.6%</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>4.3%</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>7.9%</td>
</tr>
<tr>
<td>Corethra larvae</td>
<td>3.9%</td>
</tr>
<tr>
<td>Trichoptera larvae</td>
<td>0.4%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3.7%</td>
</tr>
</tbody>
</table>
The distribution of the fauna is most clearly and concisely shown in graphs VIII and IX.

Factors Affecting the Quantity of Bottom Fauna and Comparison of Lake Simcoe with Other Lakes

The quantity of bottom fauna is necessarily affected by the factors which we have described as limiting its quality and distribution. The division of the study into qualitative and quantitative aspects is convenient but quite arbitrary, since the quantity of the fauna depends to some extent on the quality, and the quality and distribution of the fauna are best studied by systematic quantitative sampling. Although the same factors are at work in each case, their effects may appear in a slightly different manner and a few additional factors may be involved.

The “type” of the lake and general factors

In the discussion of lake types (pages 91-95) it was seen that an “eutrophic” lake, of which Lake Simcoe is an example, had certain fundamental features. Eutrophic lakes have a rich plankton, a low oxygen content in deep water, definite thermal stratification, a well decomposed detritus bottom and a relatively large bottom fauna of a definite composition. That these features are definitely associated is suggestive of the fact that the amount of bottom fauna is affected by the type of bottom, temperature and thermal stratification, oxygen supply and the amount of plankton. Other factors mentioned as affecting the bottom fauna were the water movements, light penetration and biological associations, both plant and animal.

The richness of the lake

The total food in circulation, or the richness of a lake, is reflected in the amount of bottom fauna. This is to some extent limited by the amount of salts and organic matter supplied to the lake by its drainage basin. To a greater extent it is dependent on the nature of the lake itself, whether it is economic, as in an “eutrophic” lake where a large amount

of organic matter is in circulation, or whether it is inefficient, as in an oligotrophic and polyhumus lake, where large quantities of organic material are lost in its peaty bottom and the bottom fauna is scarce. It is probable that the “type” of the lake has more influence on the amount of its fauna than its situation in a rocky Archaean area or a rich sedimentary area, although it is recognized that the “type” itself is affected by the nature of the surrounding country.

The composition of the fauna

The composition of the fauna may have various effects on the total quantity of organisms. A given lake may not have in its fauna the most efficient organisms to turn its food into fauna. In another case the nature of the fauna may have been greatly modified by its geological history, as in Lake Nipigon, where the bottom fauna of the deep water is largely dependent on *Podophoreia hoyi*, a glacial relict crustacean. The time factor is also to be considered as affecting the composition of the fauna. At any set time the fauna is at one stage in an evolution which includes the rising and falling of certain species or groups. Under such circumstances it is not to be expected that the total amount of fauna should remain constant. Observations by Lundbeck and Alm, page 116, on the yearly variation in the bottom fauna of certain lakes, indicate that these changes of the fauna may go on more rapidly than we should suspect any animal association to evolve.

Size (depth and area) of a lake

The depth and area of a lake affect the amount of fauna present. We have stated that depth has an effect on sedimentation, thermal stratification, currents, etc. Area, too, has its effect through these and other factors. In spite of the complexity of these interactions, a consideration of the relation between total fauna, depth and area of a lake brings out some significant results.

Observation shows that in general a lake of large area
supports a smaller population per unit area than a small lake. That this relation is due to certain physical differences need not interest us for the moment. In the same way it is observed that deep lakes usually support a smaller fauna than shallow lakes.

Green lake, Wisconsin, has an area of 12 sq. miles and supports an average fauna of 24 lb. per acre. Lake Mendota is 15 square miles in area and supports a fauna of 42.9 lb. per acre. Obviously these data do not support the above contention that large lakes are poorer in bottom fauna than small ones. The explanation of the situation is found in the depth of the two lakes, Lake Mendota having an average depth of 45 ft. in contrast to Green lake with an average depth of 109 ft. From this example it is clear that we must consider the two factors, depth and area together, if we would explain the amounts of fauna in lakes of different sizes.

It is less obvious, but quite definite, that there is a limit to the range over which increase in area continues to affect a decrease in amount of fauna. Lake Nipigon and Lake Ontario, for instance, have about one-half the amount of bottom organisms that Lake Simcoe has though they are many times its area.

We have suggested 40 square miles as a tentative limit at which area ceases to control the amount of fauna. Lake Nipigon and Lake Ontario, for instance, have about one-half the amount of bottom organisms that Lake Simcoe has though they are many times its area.

We have suggested 40 square miles as a tentative limit at which area ceases to control the amount of fauna. This does not mean that greater areas affect no decrease in fauna, but that areas greater than 40 square miles cease to have importance in this connection.

By a similar process it has been decided that depths greater than 100 ft. have no dominant effect on the bottom fauna.

Minimum as well as maximum limits of depth and area at which the bottom fauna is affected are no doubt existent. For instance, a lake or pond of two acres in area does not necessarily support a greater fauna than one of similar depth with an area of 10 acres. Such limits do not enter into the present discussion since none of the lakes under consideration are of such a magnitude.

The area, depth and amount of average bottom fauna in seven lakes are included in table 10. Wherever possible, average depth is calculated with reference to the relative areas at each depth, i.e., average depth = volume + area.

Table 10. Showing the size and amount of bottom organisms in seven lakes of eastern North America.

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Area in sq. mi.</th>
<th>Average depth in ft.</th>
<th>Maximum depth in ft.</th>
<th>(Area x) Average depth in ft. (up to 40 ft.)</th>
<th>Average bottom fauna in lb. dry weight per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Mendota, Wisc.</td>
<td>Juday '22</td>
<td>15.2</td>
<td>44</td>
<td>84</td>
<td>669</td>
</tr>
<tr>
<td>Green lake, Wisc.</td>
<td>Juday '24</td>
<td>11.5</td>
<td>109</td>
<td>237</td>
<td>1150</td>
</tr>
<tr>
<td>Waskesiu lake, Sask.</td>
<td>Rawson</td>
<td>27.0</td>
<td>50</td>
<td>75</td>
<td>1350</td>
</tr>
<tr>
<td>Lake Simcoe, Ont.</td>
<td>Rawson</td>
<td>280</td>
<td>50</td>
<td>150</td>
<td>2000*</td>
</tr>
<tr>
<td>Lake George, N.Y.</td>
<td>Juday '22</td>
<td>74.4</td>
<td>80</td>
<td>187</td>
<td>3200*</td>
</tr>
<tr>
<td>Lake Nipigon, Ont.</td>
<td>Adamstone '24</td>
<td>1750</td>
<td>180</td>
<td>410</td>
<td>4000*</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Adamstone '24</td>
<td>7050</td>
<td>300</td>
<td>738</td>
<td>4000*</td>
</tr>
</tbody>
</table>

*Modified according to the limits explained below.
**Calculated from five dredgings in deep water.
†From a single series across Lake Ontario, Toronto to Niagara river.

Since the amount of fauna varies both with depth and with area, graph X has been constructed in which the average amount of bottom fauna in different lakes is plotted against the product of their separate depths and areas. Bottom fauna is expressed in pounds dry weight per acre, area in square miles and depth in feet. In cases where the area is greater than the limiting area (40 square miles) the depth is multiplied by the limiting area (i.e., by 40). Depth is treated in a similar manner.

From the curve in graph X it is evident that bottom
fauna varies with a definite relation to the product of depth and area. (The product of area x depth is not referred to as volume since the two factors should be thought of as distinct influences.) The relation between bottom fauna and depth x area as indicated by the curve cannot be represented by any single equation. Such a result is to be expected when the casual factors are so complex and the bottom fauna itself quite heterogeneous.

Graph X. The relation between the amounts of bottom fauna and the product of the depth and area (within limits) of lakes.

Graph X and table 10 include the estimates of the bottom fauna in seven American lakes on which extensive bottom surveys have been made. Two other lakes have not been included.

A thorough study of the bottom fauna of a part of Oneida lake was made by Baker, (1916, 1918). The average bottom fauna was found to be 245 pounds per acre, a large quantity due chiefly to the large number of molluscs present. The estimate of 245 pounds was made by Richardson (1921) and refers to whole weight minus the shell, and not dry weight. Richardson's estimates both for Oneida lake and the Illinois river have been quoted along with dry weight estimates with a very misleading effect. Oneida lake is omitted from the graph and tables not because it fails to follow the depth-area relation, but because South bay, the area studied, was a shallow protected area and not representative of the lake as a whole.

The connecting lakes of the Illinois river, investigated by Richardson (1921, 1923) are not directly comparable to the above series of lakes. They are not strictly confined areas and they are subject to a very special influence in the flow of the Illinois river. The bottom fauna of these lakes is in the neighbourhood of 50 lb. dry weight per acre, exclusive of mollusc shell, while the Illinois river itself supports a bottom fauna of 98 lb. per acre.

The results of bottom fauna surveys in northern European lakes have always been expressed in live weight of organisms. Although we have some data on the relation of live weight to dry weight, we can at best make only a rough calculation of the equivalent value, since the percentage of moisture varies somewhat among the different organisms. Lundbeck's data on north German lakes, if transferred to a dry-weight basis, will be of special interest since the lakes are of dimensions for which the minimum limiting depth and area might be determined.

It is obvious that this relation is not universal. Certain lakes will deviate a great deal from the condition expressed by the curve. It is to be expected, however, that as the body of quantitative data on bottom fauna increase, it will be possible to define the curve and the upper and lower limits with increasing accuracy.

The relation between the quantity of the bottom fauna in a lake and the product of its depth and area may be expressed as follows:
"A small lake, less than one square mile in area, may be expected to support a large bottom fauna, more than 100 pounds dry weight per acre. In lakes of increasing size the amount of bottom fauna falls off rapidly until the product of the depth in feet and the area in square miles is approximately 1,300. A lake of this size supports an average bottom fauna of 10 to 15 lbs. dry weight per acre. From this point the bottom fauna decreases slowly until in the largest lakes it is in the neighbourhood of 5 lbs. dry weight per acre. In any lake depth over 100 feet and area over 40 square miles cease to affect the amount of fauna in any marked degree."

The meaning of this relation is that depth and area have such a fundamental effect on the secondary limiting factors, e.g. temperature, oxygen of the deep water, bottom deposits, etc., that the combined results of these secondary factors on the fauna can still be correlated with depth and area.

The chief factors which may result in a deviation from the above relation are the configuration of the shore line, the nature of the watershed and the climate of the country. If a lake has a very irregular outline the effects of littoral conditions are spread over a large area. Aquatic plants and the mineral types of bottom occupy a larger proportion of the lake's area with considerable effect on the bottom fauna. In semi-enclosed bays the "protection" effect is so great that conditions are very much like those in a small lake. The relation of bottom fauna to depth and area is most applicable to lakes with moderate amounts of protected and exposed shoreline.

A lake in a rich, sedimentary country, surrounded by cultivated land, would be expected to support a greater bottom fauna than a lake of similar dimensions but situated in a rocky, Archaean type of country. Conditions such as these are represented by Lake Simcoe and Lake Nipigon. That Lake Simcoe supports a bottom fauna twice as great as that of Lake Nipigon may be partly due to this difference though too many other factors enter into the problem to allow a definite conclusion. Pearsall (1921) has called attention to the differences in the flora and fauna of lakes of different ages, i.e. primitive or evolved.

The fauna in different lakes of similar dimensions is affected by such climatic conditions as the temperature and exposure to winds. The temperature affects the rate of growth of bottom organisms and the length of the growing season, both of primary importance in the production of bottom fauna. Winds have their effect through the water movements which they produce, as explained on page 81. In some cases the correlation between depth and area and amount of bottom fauna may appear to be lacking because of inaccuracy of the determination of the average bottom fauna. A single representative figure for the bottom fauna of a lake is by no means an easy determination. Granted that sufficient samples are taken, the result may still be influenced by variations in the experimental method, e.g. inclusion or exclusion of forms intermediate in size between macro- and microscopic groups, calculation of dry weight, inclusion of mollusc shells, etc. Another very important point to be dealt with in a later section is the variation in the quantity of bottom fauna present at different seasons.

The chief points of resemblance and difference between the bottom fauna of Lake Simcoe and that of other lakes have been brought into the above paragraphs. There remain some further comparisons, including discussion of the amounts of bottom fauna found on different types of shore.

The quantity of fauna in the shore zone, 0-1 m. deep, in Lake Simcoe

The numbers of various groups of organisms inhabiting this zone as a whole were included in table 9. In table 11 are found the number and dry weight of organisms on different kinds of shore together with the percentage of each shore type present around Lake Simcoe and the average shore production calculated with reference to these percentages.

In the shore zone of Lake Simcoe the bottom fauna varies from 1.04 kg/ha on bare sand to 26.1 kg/ha on protected stone shores. These are respectively the smallest and largest bottom populations to be found anywhere in the lake,
and they are found where we would expect to find them, in the region of most variable conditions. The predominance of exposed shores, 77 per cent. in Lake Simcoe, reduces the average quantity of bottom fauna in the shore zone to 10.28 kg/ha or 9.13 lb. per acre, which is slightly smaller than the average for the whole lake.

Table 11. The numbers and weight of bottom organisms on different types of shore (0-1 m), Lake Simcoe.

<table>
<thead>
<tr>
<th>Type of shore</th>
<th>Percentage of each shore type in Lake Simcoe</th>
<th>Average No.* of organisms per sq. m.</th>
<th>Total dry weight of organisms in kgm. per hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bare sand, exposed</td>
<td>33%</td>
<td>43</td>
<td>1.04</td>
</tr>
<tr>
<td>2. Sand with vegetation</td>
<td>3%</td>
<td>696</td>
<td>16.0</td>
</tr>
<tr>
<td>3. Bare stone, exposed</td>
<td>44%</td>
<td>227</td>
<td>5.96</td>
</tr>
<tr>
<td>4. Protected stone</td>
<td>10%</td>
<td>1468</td>
<td>26.1</td>
</tr>
<tr>
<td>5. Mud with vegetation</td>
<td>10%</td>
<td>685</td>
<td>12.7</td>
</tr>
<tr>
<td>Average fauna over whole shoreline</td>
<td></td>
<td>405</td>
<td>10.28</td>
</tr>
</tbody>
</table>

*Minute forms, e.g. Entomostraca, not included.

Adamstone (1924) emphasizes the barren nature of the shore in Lake Nipigon where “storms produce long stretches of barren rocky or sandy shore” and “where bottom organisms are few and aquatic vegetation is unable to gain a foothold.”

In Green lake, Juday (1924) found the average shore fauna only 8.7 kg/ha, not much more than one-quarter the average for the whole lake. Richardson (1921) has estimated the fauna of the shore zone (0-1 m) of Lake Mendota at 67 kg/ha, which is probably a live weight since he compares it directly with the live weight of the fauna of lakes in northeastern Illinois. If this is the case, the shore fauna of Lake Mendota, like that of Green lake, is poorer than the bottom fauna of its deeper water. The shore fauna of different lakes cannot be fairly compared in a direct manner, but rather on a basis of the amount of shore fauna relative to the total fauna. On this basis it is surprising that Lake Simcoe produces a shore fauna almost equal to the average fauna in spite of the predominance of exposed shores.

Bottom Fauna of European Lakes

In order to make the available data on the bottom fauna of northern European lakes comparable with Lake Simcoe, the live weight measurements must be converted into dry weight. The examination of a large amount of data, chiefly from Juday (1922, 24), in which equivalent live and dry weights are given, reveals the fact that bottom organisms contain from 75 to 85 per cent. water, usually in the neighbourhood of 80 per cent. Using this value, results given in live weight may be converted into equivalent dry weights.

Table 12 shows the average bottom fauna of European lakes grouped and averaged.

Table 12. Comparing the bottom fauna of four groups of northern European lakes.

<table>
<thead>
<tr>
<th>Lakes</th>
<th>Investigator</th>
<th>Average live weight of bottom fauna in kgm/ha</th>
<th>Calculated dry weight of bottom* fauna (20%) in kgm/ha</th>
<th>Calculated dry weight of bottom fauna lb/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Swedish lakes</td>
<td>Alm '22</td>
<td>34.7</td>
<td>6.9</td>
<td>6.1</td>
</tr>
<tr>
<td>10 Norwegian lakes</td>
<td>Olstad '25</td>
<td>69.2</td>
<td>11.8</td>
<td>10.5</td>
</tr>
<tr>
<td>18 Finnish lakes</td>
<td>Järnefelt '22</td>
<td>12.5</td>
<td>2.5</td>
<td>2.4</td>
</tr>
<tr>
<td>87 North German lakes</td>
<td>Lundbeck '26</td>
<td>798.5</td>
<td>159.7</td>
<td>142.0</td>
</tr>
</tbody>
</table>

*Averages from Lundbeck (1926).
metres in depth. A résumé of the size and the bottom fauna yield of 12 lakes is given in table 13. The data are from Alm (1922, 23).

Table 13. Data on twelve Swedish lakes studied by Alm (1923).

<table>
<thead>
<tr>
<th>Lake</th>
<th>Area in hectares</th>
<th>Maximum depth in metres</th>
<th>Average dry weight of bottom fauna kgm/ha</th>
<th>Calculated dry weight of bottom fauna lb/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsjön</td>
<td>550</td>
<td>2.15</td>
<td>11</td>
<td>74.3</td>
</tr>
<tr>
<td>Väner</td>
<td>557</td>
<td>2.17</td>
<td>89</td>
<td>4.6</td>
</tr>
<tr>
<td>6 small lakes</td>
<td>100-400</td>
<td>0.39-1.5</td>
<td>26</td>
<td>13.9</td>
</tr>
<tr>
<td>4 very small lakes</td>
<td>2-62</td>
<td>0.08-0.2</td>
<td>9.1</td>
<td>85.0</td>
</tr>
</tbody>
</table>

Landsjön and Väner lakes are of similar area but the former lake supports a bottom fauna more than ten times that of Väner. The difference is partly a result of greater depth, the maximum for Landsjön being 11 metres and Väner having a depth of more than 89 metres. A further explanation is found in the fact that Väner is an oligotrophic lake, poor in plankton, with a high oxygen content, deep water and a varied but poor fauna, largely composed of relict amphipods.

Of the remaining ten lakes, the group of six with areas of 0.3 to 1.5 square miles, show an average bottom fauna of 2.49 lb. dry weight per acre. The group of four with areas of 0.08 to 0.2 square miles, have a greater fauna, averaging 15.0 lb. dry weight per acre. The difference in quantity of bottom fauna may be regarded as the same “area by depth” effect as that found among lakes in America (page 102).

The average bottom fauna of nineteen Swedish lakes investigated by Alm is remarkably small, both as compared with Lundbeck’s figures for north German lakes and as compared with American lakes. Three different factors may be partly responsible for this condition. The group contains a large number of “low-producing” lakes, *i.e.* oligotrophic types with *Tanypus* or *Corethra* predominating in the fauna. In general the lakes are situated in rocky rather than rich sedimentary drainage areas. The data include only the fauna from mud bottom and as such may not be quite representative of the whole lake.

The Norwegian lakes investigated by Olstad (1925) are less varied among themselves than those examined by Alm, so that the average of 63.5 kgm/ha live weight is fairly representative of all the lakes. The Scandinavian lakes are, on the whole, situated in a more rugged type of country than the German and Finnish lakes which have been studied. The difference in the amounts of bottom fauna may be in part the result of this factor.

Jarnefelt’s investigation revealed a great variety in the bottom fauna of Finnish lakes. Six lakes produced less than 10 kgm/ha live weight, about 1.8 pounds per acre dry weight, eleven lakes supported an average fauna of 50 kgm/ha or 9 lb. per acre dry weight and in a single lake the bottom fauna was more than 300 kgm/ha or 53 lb. dry weight per acre.

For the north German lakes, Lundbeck gives an average quantity of 785 kgm/ha live weight. This may be made comparable with our results by deducting the weight of mollusc shell which leaves* 282.7 kgm/ha. Of this quantity the dry weight represents about 20 per cent., 56.5 kgm/ha or 51 lb. dry weight per acre. These lakes vary in area from 1.3 ha. (.05 sq. miles) to 3,130 ha. (12 sq. miles) and average 320 ha. (1.25 sq. miles). Their maximum depths range from 1 m. to 83 m., averaging 24 m. (79 ft.). On this basis the average lake, 1.25 sq. miles in area and with a maximum depth of 79 ft., produces a bottom fauna of 51 lb. dry weight per acre. The dispersion of the dimensions is too great to make this figure of any great significance. The Plöner See, one of the largest of the 57 lakes, and the one in which Lundbeck made the most intensive investigations, is much more comparable to Lake Simcoe and the results more instructive.

The Plöner See is 3,130 hectares in area or 12 sq. miles, and has a maximum depth of 60.5 metres. The two large

Lundbeck’s own estimate.
bays in which Lundbeck did most of his dredging have maximum depths of 31 and 44 metres. The average depth is not stated but from the data at hand it might be estimated as 25 or 30 metres for the whole lake. The bottom fauna for lakes of the type to which the Ploner See belongs amounts to 408 kgm/ha, of which 72 kgm. is chironomid larvae, 255 kgm. Mollusca and 81 kgm. other groups. Deducting the mollusc shell, which Lundbeck found to be 3/4 of the total body weight, the average bottom fauna becomes 217 kgm/ha, the equivalent of 32.55 kgm/ha dry weight or 29.3 lb. per acre. Using the data 12 sq. miles, depth 25 m. or 82 ft., bottom fauna 29.3 lb. per acre, we find that the Ploner See plotted on graph X comes very close to the curve midway between Lake Mendota and Green lake. It has not been recorded on the graph because it was necessary to estimate the average depth of the lake without conclusive evidence. The data are sufficient to show that the Ploner See supports a bottom fauna nearly equal in quantity to that of typical North American lakes of a similar size.

THE RATE OF GROWTH AND THE ANNUAL CROP

The average amount of bottom fauna present throughout the summer season is not representative of the productivity of the bottom. A true estimate of the bottom productivity must take into account the rate of production as well as the amount of fauna present at a given time. The latter amount depends both on the rate of production and the rate of utilization or destruction. While these processes are, over a long period of time nearly equal, their rates vary at different seasons so that the fauna present at any given time is just a "balance on hand." Since the major fluctuations in the bottom fauna are seasonal, the annual crop is the most convenient measure of productivity although it is known that the crop varies somewhat in different years.

The annual crop of bottom fauna in a lake depends upon two factors.
1. The amount of fauna present at the beginning.
2. The rate of multiplication and growth.

From a fish food viewpoint it is seen that much of this crop is not available as fish food for the following reasons:
1. The fauna loses heavily by the emergence of certain adult insects.
2. Some of the fauna is in parts of the lake in which fish do not feed.
3. Some of the bottom fauna prey upon each other (reciprocal food relations).

Of the available food, the bottom-feeding fish cannot be expected to find and consume the whole amount. In view of these facts we see that only a small part of the annual increment in bottom fauna is utilized as fish food. It is quite clear, however, that the annual increment or crop is the best way of expressing the productivity or value of the bottom fauna, that is, if we are able to calculate this increment.

Although the observations on Lake Simcoe extended over a three-year period, the area was so great that it was impossible to repeat the examination of any one part of the lake in successive seasons. As a result we have no evidence of yearly fluctuation in the fauna of Lake Simcoe.

Various investigators have contributed to the study of the rate of growth of bottom organisms. Petersen (1911) suggested that the growth of marine bottom fauna was sufficient to double its quantity annually. The problem in fresh water is complicated by the inclusion of slow-growing species which live several years, insect larvae which live one or two years, and then emerge from the lake, and a third group which reproduces rapidly with more than one brood per season.

Richardson (1921) reports observations on the rate of growth of a gastropod, Vivapara contectoides, in the Illinois river. He found an increase of 63 to 101 per cent. in the body weight, minus shell, over a twelve-month period. In the north German lakes Lundbeck found a yearly production of all mulluscs averaging 33 per cent. of the average summer fauna.

Lundbeck studied the annual production of chironomid larvae in the Ploner See and using data on the rate of growth, the numbers present, increase due to reproduction, decreases due to emergence and being eaten, he was able to determine
the annual crop to be 3 to 4 times the average summer fauna or 2 to 3 times the maximum number, i.e. the December fauna. With Tubifex the problem was less complex, and Lundbeck has placed the productivity at twice the total population, a figure which he applies to the rest of the fauna, i.e. exclusive of molluscs and chironomids.

The remaining groups are unimportant with the possible exception of the ephemerid nymphs and the Amphipoda. The latter have been found to produce several, as many as four, generations per year (Embody, 1912). In Lake Simcoe the amphipods are absent from the deep water and unimportant in the shallow areas. The ephemerid nymphs are not large in number, but relatively important as fish food. It is known that some of the Ephemeridae spend at least two years in the nymphal state (Morgan, 1913).

Seasonal Variation in Amount of Bottom Fauna

The most comprehensive investigation of seasonal variation in bottom fauna has been carried out by Lundbeck, chiefly on the Plöner See. From monthly observations over a period of two years he was able to follow the fluctuations in the number, size and total weight of chironomid larvae. His results have been discussed in some detail on page 57, and comparisons made between the chironomids of the Plöner See and the chironomid fauna of Lake Simcoe. He was able to follow the whole life history of the two more abundant species of Chironomus, C. plumosus and C. libeli bathyphilus, including their period of emergence, the rate of growth, the periods of maximum and minimum occurrence and the decrease in numbers due to mortality, e.g. being eaten by fish. Combining this with similar data on Corethra, Oligochaeta and Pisidium, he was able to show and explain the seasonal variation of total fauna. Since the fauna of the Plöner See, like that of Lake Simcoe, is composed largely of chironomid larvae, the variation in total fauna followed the variation in chironomid larvae, i.e. a minimum in July with the maximum emergence of adults, rapid growth of the new generation to a maximum in December, a decrease due to mortality in the spring and the minimum again with that year's emergence. The magnitude of this seasonal variation in total bottom fauna, and in chironomid larvae since the two quantities vary in unison, is seen in the fact that the minimum fauna, in July, was one quarter as great as the maximum in December.

In Lake Simcoe the best illustration of seasonal variation is found in the Corethra larvae. The numbers of Corethra larvae in the profundal zone vary from 38 per square metre in May to a definite minimum of 9 per square metre in late July, an increase to 42 per square metre in October and 70 per square metre in early November. The minimum in July is obviously the period of greatest emergence. That the maximum number of the new generation was not found until November is evidence in support of Juday's (1922) observation that the immature larvae are at first free-swimming and seek the bottom after attaining a considerable size.

The small numbers of Corethra larvae render them quite insignificant in affecting the variation of the total population in deep water. Chironomid larvae are the large part of the fauna in Lake Simcoe, but unlike the chironomids of the Plöner See those of Lake Simcoe show no distinct summer minimum. This situation has been explained as due to the variety of species present in the deep water with a corresponding variety of periods of emergence. The overlapping of these periods of emergence prevents the appearance of any distinct minimum and as a result it is probable that the total fauna shows less variation than that in the Plöner See. Since the examination of the fauna in Lake Simcoe extended from May to October, inclusive, the average determination does not include the winter maximum of fauna, it does, however, include most of the season of active growth, so that it probably approximates the average yearly fauna.

Annual Variation in Amount of Bottom Fauna

That the quantity of bottom fauna might vary slightly over a period of years is quite conceivable. That it should